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I. INTRODUCTION

This report is the Systems , Science and Sof tware (S3)
contribution to a joint research project carried out in

collaboration with Applied Theory , Incorporated (ATI ) and
Pacific Sierra Research (PSR). A series of cratering calcula-

tions were done by ATI and the results were transmitted to

S3 for processing . The S3 contribution has been to compute

theoretical body and surface wave records from the ATI data
and from these to obtain m

b and M .  The results are to be
analyzed by PSR.

The computational procedure employed at S3 is to
first obtain an equivalent elastic source representation of

the cratering explosions. Having an elastic source repre-

sentation , elastic wave propagation methods can be employed

to compute theoretical seismograms. The key step in this

procedure is clearly the interpretation of the raw data in

terms of an equivalent elastic source.

The computation of an equivalent elastic source from

the output of f inite difference calculations has been ac-
complished at S3 for a number of complex explosion and earth-
quake sources. However, all of our experience has been with

sources that were entirely surrounded by an elastic material.

The cratering sources then provided a special problem . In

fact , our technique is not rigorously valid for half-space
sources of this kind. Therefore , it is quite important to

understand the approximations that must be employed and their
potential effect on the results.

In analyzing the approximations made we conclude that

in every case the effects are much more severe for the S

waves then for the P waves. In fact, the short period P

waves seem to be handled very well by our technique. Since

the S waves have almost no effect on the body wave seismo-

grams, we have considerable confidence in the mb values
generated .

1
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In order to compute M5 we have to accurately compute
the source at periods of about 20 seconds. The f in i te dif-
ference calculations were terminated at 2.5 seconds. There-

fore , our M5 calculations depend on the source havinq reached
a static state. This is much closer to being true for the P

waves than for the S waves. Fortunately, we f in d that for
this case the S waves have to be quite a lot larger than the
P waves to substantially perturb M5, so our errors in the
long period S waves may not be too important. Still , we have
less confidence in the M values than in the mb values.
Nevertheless , we are treating all calculations the same and
we can reasonably suppose that trends are properly reflected
in the M data.

S

We also computed the seismic waves for the ejecta

fai lback for several of the sources. We f ind tha t this
contribution to the body and surface waves is too small to
be of any significance for and M5 measurements.

The report is organized in nine sections and five

appendices. In Section II we outline the computational

procedures. We also suxranarize the content of the appendices

where detailed exposition of some aspects of the theory and to
application j5 given. In Section III we briefly describe the

fourteen fini’ce difference calculations to be studied.
Twelve of these are cratering calculations and two are for
spherically symmetric contained explosions. In Section IV

we discuss the equivalent elastic source representation of

the cratering calculations. The approximations made and

their effect on the solution is indicated in some detail in
this section. The far-field displacement spectra are

extracted from the source calculations and displayed in
Section V. Sections VI and VII give the mb 

and M
5 results.

In Section VII the seismic waves generated by the ejecta
faliback are discussed . Finally , in Section IX the sources
are scaled to 37.5 and 600 kt and the and M5 are computed
for each of the fourteen sources.

2
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II. COMPUTATIONAL PROCEDURE

In this section we outline the computational procedure
used to compute M5 and in,0 for the ATI cratering calculations.

The main steps in our procedure may be listed as follows:

1. The ATI performed cratering calculations were
carried into the regime where the material res-
ponse is approximately linearly elastic. A tape
was then prepared containing the time histories
of the divergence and curl (V•u(t) , Vxu (t) ) of
the displacement field on a radius, denoted the
elastic radius, centered at ground zero. The
geometry and coordinate system are shown in
Figure 2.1.

2. The divergence and curl are expanded in a series
of spherical harmonics to obtain an equivalent
elastic source. The procedure is formally that
described by Bache and Harkrider (1976] for
sources in a whole space. However, the presence
of a free surface requires a number of assumptions
that, to some extent, control the solution. The
extent of this effect is discussed in some detail
in this report. However, the most important
point is that all the cratering calculations are
treated the same way and the relative values of

and M3 should be preserved.

3. Using the equivalent elastic source, synthetic
seismograms are computed for body waves and sur-
face waves. For body waves the pertinent references
are Bache and Harkrider 11976] and Bache, et al.
(1976]. For surface waves we use the method of
Harkrider which has been described in numerous
publications; e.g., Harkrider [1964], with certain
modifications indicated in Section VII.

3 
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Figure 2.1. The geometry and coordinate system for the crater-
ing calculations. The solution is independent of
the azimuthal coordinate.
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4 .  The values of ni
b and M5 are strongly dependent on

the crust and upper mantle models used in the syn-

thetic seismogram calculations. However , the same
models are used in all calculations and the rela-
tive values should be insensitive to these models.

5. The free surface stresses due to the ejecta fall—
back were also provided to us by ATI. These data
were analyzed to determine the effect on the far—
field body and surface waves.

Further descriptions of the computational procedure
are contained in subsequent sections of the main body of the
report where the equivalent elastic source representation ,

the far-field displacement spectra and the teleseismic wave-

forms are discussed. Also included in the report are a

number of Appendices which treat various aspects of our work
in considerable detail. The content of these appendices is
briefly summarized below.

~ppendix A: Theory of the Equivalent Elastic Source Repre-
sentation

This appendix is a reproduction of a section of a
paper by Bache and Harkrider (1976]. It outlines the mathe-
matical formulation for representing an arbitrary volume
source in an elastic , homogeneous and isotropic space in
terms of an expansion in spherical harmonics. The expansion
coefficients, the multipole •coeffjcients , provide an equiva-
lent elastic source representation.

~p~~ndix B: Application of the Multipolar Expansion Techni-
que to Crater ing Explosions

The procedures of Appendix A , appropriately modified ,
can give a satisfactory representation of the output of the
cratering calculations. The approximations required are
discussed in Appendix B.

5
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Appendix C: Effect of Source Symmetry on the Multipolar
Source

The most important approxima tion is in the choice of
the symmetry to be imposed on the computed radiation field .
The possibilities are discussed in Appendix C.

Appendix D: Detailed Description of a Typical Calculation
of the Multipolar Source Representation

We go through a typical calculation step-by-step and
indicate the operations carried out.

Appendix E: The Seismic Waves Due to a Stress Distribution
Applied at the Surface of a Multilayered Half-
space

In order to compute nib and M5 for the ejecta impact
portion of the cratering calculations, it was necessary to
extend our theoretical results to include the case of a
distribution load on the surface. The theory is developed
in Appendix E.

6
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III. DESCRIPTION OF THE CRATERING CALCULATIONS

In order to carry out our analyses of the cratering

calculations , it was necessary to have some information
about the source depth and the local material properties.

Thi s inform ation ,together wi th an identif ier for each
calculation for u se in subsequent section s, is summar ized
here.

We will be describing four teen source calculations in
three emplacement materials. Two of these are one—dimen-

sional calculations for contained explosions in a homogeneous
whole space and provide benchmark cases for measuring the
effect of the cratering . The other twelve are cratering

calculations. The important parameters characterizing the

calcula tions are summarized in Table 3. 1.

We see from the table that the calculations have the
potential to help us understand :

1. The ef f ect of burial depth on the teleseismic
signature of cratering explosions.

2. The effect of emplacement material on the signal

from cratering explosions.

3 . The di fference between cratering and contained
shots in the same material .

Cons idering the approximations made in our calcula tions (ex-
clusive of any d i f f i cu lties with the f ini te di f ference cal-
culations) , the above are listed in order of the amount of

confidence we place in the results. That is, we are most

optimistic about our conclusions regarding differences in

the source coupling between events that differ only by the
burial depth. On the other hand , we are least confident
in conclusions about the d i f f erences between cratering and
contained explosions.

7
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TABLE 3.1

PARAMETERS DESCRIBING THE ATI CALCULATIONS

Identifier Material Depth (lcn) ci (kttVsec) ~ (~ctVsec ) p (lcWsec)

1 Granite 0.159 4.402 2.54 2.661

2 0.207 4.402 2.54 2.661

3 ~1 0.253 4.406 2.542 2.661

4 Dry Sandstone 0.159 2.822 1.740 2.30

5 II 0.207 2.825 1.743 2.30

6 0.253 2.828 1.744 2.30

7 Lc~i Strength 0.207 2.836 1.755 2.30

8 Wet Sandstone 0.053 2.620 1.509 2.40

9 “ 0.159 2.624 1.592 2.40

10 0.207 2.614 1.513 2.40

11 0.253 2.618 1.517 2.40

12 0.531 2.619 1.519 2.40

13 Granite Spl~~rica11y 4.239 2.448 2.661
Syrrc~ tric

14 Wet Sandstone Sp1~~rically 2.619 1.530 2.4 0
SyIm~ t.ric

p

8
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IV. EQUIVALENT ELASTIC SOURCE REPRESENTATION

4.1 MULTIPOLE COEFFICIENTS IN THE TIME DOMAIN

The procedure used to obtain the equivalent elastic

source representation for the cratering calculations is des-
cribed in detail in the Appendices. The basic equations
written in the frequency domain are given by A.1-A.5 of

Appendix A. In our implementation, we actually use the time
domain analogues of these equations. That is, the equation
of motion is written

2
-_ j=ct V X — 2 ~ V X X  (4.1)
at

• where the Cartesian potentials are defined by

= .

(4.2)

1

The potentials are expanded in spherical eigenfunctions
as follows

(R,w) = ~~~ [A~~ (R,t) cos m~
L=O m=0 (4 . 3 )

+ ~~~~~ (R , t) sin rn~JP~ (cos9), j = 1,2,3,4.

Note that these equations are identical to A.l, A.2, A.4, if

A~
i
~ (w) = 

1 f  ~~~ (R,t)e~~
Wt dt, (4.4)m h~~~ (k R) m

L j -
~~~~

9
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and similarly for B~~~~(w). Note that (4.4) is simply a

Fourier transformation normalized by the Hankel func tion.

In computing the multipolar representation of the

cratering calculations we assume axisymmetry and vertical
antisyxumetry, the case described in Section C.2.3 of
Appendix C. Then the multipole coefficients in the time
domain are actually computed from C.32—C.34. For example,

for the P-wave portion of the field the nonzero terms are

(R , t)  = ( 2 2 + l )  f  x~
4
~ (R , 6 , t) P~ (cose) sine do ,

9. = 1,3 ,5..., (4.5)

and the (R,e ,t) is the time history of the divergence
of the displacement field given on the quarter-circle of

radius Re (see Figure 2.1).

It turns out that the dominant term for the and M
5

determinations is the leading term in the expansion of the
P-wave portion of the field ; that is, ~~~~ (R,t). The other

terms provide higher order corrections as will be explained
in later sections. For now , let us examine the “dipole—P”
term as it is a fair representation of the equivalent elastic
source. In Figures 4.1 through 4.3 the computed ~~~~ (R,t)

is plotted for each of the twelve cratering calculations.

The mul tipole coefficient is d imensionless and the amplitude
depends on the radius , R.

For each calculation we indicate the theoretical ar-
riva l time for the P , S and Rayleigh CR) waves. For the

P wave this time is simply (R—h)/a since the shortest path

from the source to the elastic radius is straight down. The

same is done for the S wave. The theoretical arrival time

for the Rayleigh wave at the free surface is R/VR~ 
where

the Rayleigh wave velocity , VR 
= 0.9l92B. This is the time

10
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indicated on the plots. However , the Rayleigh wave arrives
earlier at depth , though its amplitude decays exponentia l ly
with depth. For example , at 30 ° down from the free surface
the arrival time is cos 30° or 0.866 times that shown. This

time turns out to be close to the S wave arrival time indi-
cated so the Rayleigh wave arrival can be thought to be
somewhere in the zone between the two. Otherwise, no energy
is expected at the S wave arrival time as no S waves should
be propagated directly from the source. Further , the diver-
gence should be transparent to S wave radiation.

Examining the dipole-P term for the granite calcula-

tions , the theoretical P wave arrival is an elastic travel
time and is later than the actual energy arrival. This is

expected because of the higher shock wave velocities in the

nonlinear regime near the explosion. There is no indication

of the Rayleigh wave having a substantial influence on the

record. Even if the Rayleigh wave displacements were large ,

we would expect them to perturb the curl more strongly

than the divergence. Finally, we observe that after the

passage of the main pulse , the time series approaches zero
as a static limit and oscillates about this value by small ,
and probably insignificant, amounts.

For the dry sandstone case (Figure 4.2) the dipole-P

coefficient behaves differently than for the granite after

the first peak and trough. Once again , it seems to settle
to a static value at about the time marked R. However, this
static value is clearly negative and the oscillations are
considerably larger compared to the peak values.

The behavior of the dipole—P coefficient is least

consistent for the wet sandstone cases shown in Figure 4.3.
The Case 8 term behaves like those for granite while Cases
9 and 10 look more like the dry sandstone coefficients. In
Cases 11 and 12 is the only indication of possible difficulty

14 
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associated with the presence of Rayleigh wave energy. In
the other cases the static limit is essentially attained be-
fore the Rayleigh wave arrival time but this is not true for
the last two cases.

Finally, we should mention that some of the sudden
jumps that occur in these time series, most prominently those
in the first peak of Cases 11 and 12, are associated with
rezoning in the finite difference calculations. See Appendix
D for details.

4.2 THE ORETICAL CONSTRAINT S ON THE MULTIP OLE COEFFICIENTS

Our techniques for synthesizing teleseismic body and

surface wave seismograms require the multipole coefficients

in the frequency domain. The appropriate transformation is

given by (4.4). That is, we must Fourier transform time
series like those in Figures 4.1-4.3, then normalize by the
Hankel function. Before discussing results of this operation ,
let us discuss the constraints on the form of the multipole

coefficients that are imposed by the theory.

The theoretical constraints on the solution follow
from the requirement that there be no static offset in the
far-field. That is, we require that

u r n  u
~T (R,t) = 0, (4.6a)

t+,~ 
-. -

which is equivalent to requiring that

him 11FF (R,w) w~ , n > 0. (4.6b)

The far-field portion of the field is that which decays as
R 1. The relationship between the far-field displacement
and the multipole coefficients for the case being studied
is given by (C.47)-(C.48) of Appendix C. We point out that

15
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the conditions (4.6) can be shown to be equivalent to re-
quiring a finite static displacement in the near—field .

Comparing (4.6b) with (C.47)-(C.48), we see that we
mus t require that

u r n  A~~~= ~
n+2 n > 0 , (4.7)m

for all 9. and m.

What are the implications of (4.7) for the time do-
main behavior of the multipole coefficients? From (4.4) we

observe that

~~~~ 
(w) = 

h~
2
~~(k~R) ~~~~ 

(R ,t)~ , (4.8)

where ~~ f I denotes the Fourier transform of ~ }. Since

(R,t)
lim ~~~~ (R,t) = u r n  (•!3:-

~: 
~~~ ‘ I (4.9)rn 

~~~~~ ( t

= u r n  ~~~~~~~~~ ~~~~~~rn

it is apparent that if ~~~ (R,t) has a finite static limit,

uin~j~
i) (R,t)1 = . (4.10)rn

Then , since

u r n  (2 )  = w 9.
~~~, (4.11)

w~ O h 9. (k~R)

we have

u r n  ~~~~ (~ ) = cd’, (4.12)P.m

for those coefficients which have a finite static limit.

16
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In view of (4.7) and (4.12) we see that the time domain

coeff icients  for 2. > 2 can have finite static limits. How-

ever , for the dipole (9. =1), we must require that

him ~~~~ (R,t) = 0, (4.13)m

for the solution to be finite.

- 

4.3 MULTIPOLE COEFFICIENTS IN THE FREQUENCY DOMAIN

The Fourier transformation of terms of higher order
than the dipole is carried out by assuming that the value at
the last time step is the static value. For the dipole terms,

like ~~~~ (R,t) shown in Figures 4.1—4.3 , we must have a zero
static value. To accomplish this the coefficient is simply set

to zero for all times greater than the final computed time

step. For Cases 1, 2, 3, 8, 9 and 10 this seems quite
satisfactory . The other six cases do not seem to be approach-
ing zero for long times and the approximation is more severe.

17
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V. FAR-FIELD DISPLACEMENT SPECTRA

For each of the fourteen sources listed in Table 3.1

we compute far-field displacement spectra. For the one—

d imensional , spherically symmetric calculations the equivalent
elastic source is the reduced displacement potential , ‘~(t-r!a),
which is related to the displacement by

~ (R ,w) = !.~ + , (5.1)

where all quantities are Fourier transformed . Then the far-

field displacement spectrum is defined by

uFF (R,w) = f— . (5.2)

An entirely analogous procedure is followed for the
equivalent elastic source representations for the cratering
calculations. That is, we retain only terms of order
in the expansion as is explained in Section C.3 of Appendix

C.

The displacement spectra are presented in Figures
5.1 through 5.6. The plots are log-log in amplitude versus

frequency. Note that the scale on the amplitude axis is in

powers of 10 while the actual frequencies are printed on the

abscissa. The spectra are shown at two takeoff angles ‘r (see

Figure 2.1). The teleseismic body waves are associated with

takeoff angles near r = 20°. The -r = 70°  plots are shown as
being representative of the waves trapped as surface wave
energy.

Two frequencies are singled out on the spectra for the
cratering calculations and are denoted A and B. The fre-

quency denoted B is associated with the (approximate) total

time of the ground motion data provided by ATI. That is, if

18
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the V•u(t) and Vxu (t) at a typical station on the elastic
radius had their first non—zero value at t. = 0.4 seconds

and the final time point was at tf = 2.5 seconds, we say
that the frequency B is l/ (tf

_t
~ ) or, for this example ,

0.48 Hz. Then B is the lowest frequency that can be assoc-

iated with the actual computed data.

The frequency A is associated with the procedure used
to compute the Fourier transforms. As pointed out in the pre-

vious section , beyond the time tf we assume that the lowest
order terms (the dipole) in the expansion of the divergence
and curl are zero. The higher order terms are assumed to

remain static at the value reached at the last time point.

The amplitudes at all frequencies below B are dependent on
these assumptions. In order to compute the Fourier transform

we extend the time histories out to some te using the assump-
tions mentioned above. Then A l/(t -t.).

How do we compute values for frequencies below A? We
know that the response at low frequencies is dominated by

the dipole term in the expansion . Further , in Section 4.2

we showed that the dipole term must behave like at low
frequencies for a bounded solution. This corresponds to a

flat far-field displacement spectrum at low frequencies. Our

procedure is then to extrapolate the amplitude of the dipole
term from its value at A by assuming proportionality to w2.

This is nearly the same as assuming the far—field displace-

merit spectrum to be flat to long periods from its value at

A as can be seen in the figures.

• All the P wave spectra shown are quite well behaved ,

though the high frequency portion shows considerable modula-
tion. However , some of the S wave spectra are rapidly

oscillating in a manner indicative of numerical error. Cases

5, 6 and 12 are the worst cases. The oscillations are ap-

parently due to some incompatibility between the dipole and
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higher order terms. We can ignore th is trouble because only
the portion of the S wave spectrum below , say , 0.1 Hz has any

influence on our calculations. The S waves cannot influence

the body waves (see Section VI), so we need not worry about
errors in the higher frequency region.

Fina l ly ,  in Tables 5.1 and 5 .2  we tabulate the spectral
values that have the greatest significance for computing
teleseismic body and surface waves. The amplitude values in

these tables are all on the same scale (all have been mul ti-
plied by l0~~ R) and are best viewed as relative amplitudes.

The reliability of these values for scaling mb and M5 is
discussed in Sections VI and VII .
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TABLE 5.1

BODY WAVE AMPLI TUDE SPECTRA — FAR-FIELD P WAVE
1 HZ SPECTRAL AMPLITUDES AT T = 2 00

Identifier Material Depth (kin) Spectral Amplitude

13 Granite Spherically 1.8
Symmetric

1 0.159 1.8

2 0.207 2.1

3 0.253 1.5

4 Dry Sandstone 0.159 0.60

5 0.207 0.65

6 0.253 0.72

7 Weak Dry Sand— 0.207 1.4
stone

p
14 Wet Sandstone Spher3.cally 1.7

Symmetric

8 0.053 1.3

p 9 0.159 2.1

10 0.207 2.8

11 0.253 2.7

12 0.531 2.5

27
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TABLE 5.2

SURFACE WAVE AMPLITUDE SPECTRA (0.05 Hz )

Identifier P(t=20°) S(t=20°) P(T=70°) S(r=70°) S/P (700)

13 1.3 — 1.3 — —

1 2.9 2.0 1.1 5.4 4.9

2 3.2 5.7 1.2 15.6 13.0

3 3,3 0.9 1.2 2.7 2.3

4 6.5 1.1 2.4 2.8 1.2

5 7.1 5.0 2.6 1.4 0.54

6 5.6 5.7 2.1 1.6 0.76

7 10.6 0.95 3.9 2.4 0.62

14 2.0 — 2.0 — —

8 2.2 1.7 0.78 4.6 5.9

9 10.1 7.4 3.7 20.2 5.5

10 21.3 13.6 7.7 37.8 4.9

1]. 14.4 22.0 5.2 60.1 11.6

12 13.7 11.8 5.0 32.5 6.5
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VI . BODY WAVE MAGNITUDE , m b

In this section we present our synthetic seismograms
for the fourteen ATI sources and give the values for each.

The synthetic seismogram calculations include the following

elements :

1. The equivalent elastic sources which give the

(whole space) far-field displacement spectra

described in the previous section are embedded

in a layered model of the crust in the source
region. The basic model used for the calcula-

tions is tabluated in Table 6.1. The top layer
was changed to have the properties appropriate
to each source as listed in Table 2.1. In carry-

ing out the calculations only the downgoing

waves emitted by the source are computed ; that

is , no free surface is included in the source
crustal model.

2. The far-field body waves emanating from the
base of the source crust and characterized by
ray parameter p = 0 .079  sec/km are calculated.

3. The upper mantle is accounted for by a step

function response computed using generalized

ray theory. In this case we took the distance
to be t~ = 36° which is beyond the upper mantle
triplications and the upper mantle response is
essentially a constant geometric spreading
factor with a value of about 0.9 5 x l0~~~.

4. The response of the receiver crustal model (Table
6 . 2 )  is included . In this case the receiver
crust has little effect other than scaling the

seismogram proportional to the velocity of the
top few kilometers.
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TABLE 6.1

SOURCE REGION CRUSTAL MODEL

Depth (kin) Thickness (kin) CC(km/sec) ~(km/sec ) p (g/cm 3 )

1.0 1.0 Granite, Wet or Dry Sandstone

1.7 0.7 4.7 2.7 2.6

2.7 1.0 5.4 2.8 2.7

- 4.0 1.3 5.8 3.45 2.8

20.0 16.0 6.0 3.50 2.8

TABLE 6 . 2

RECEIVER REGION CRUSTAL STRUCTURE

Depth (kin) Thickness (kin) cC(km/sec) 8(km/sec) p(km/sec)

2.58 2.58 3.67 2.31 2.40

4.84 2.26 5.42 3.27 2.60

11.61 6.77  5.80 3 .45  2 . 6 0

20 .0  8.39 6 .00  3.50 2 . 8 0

30
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5. The response is convolved wi th  an operator repre-
senting the attenuation and dispersive properties

of the earth.  For these calcula tions we took
t~ = 0.7 (t* is the ratio of travel time to the

effective path attenua tion factor , Q).

6. The ground motion is convolved with the response

of a standard short period seismograph system.

The synthetic seismograms are shown in Figures 6.1 and
6.2. The cycle from which m

b is measured is indicated on
each record by a bar. The m

b values and the period of the 1%
cycle are tabulated in Table 6.3. The mb is computed from

log + 3 . 3 2  , (6.1)

where T is the period tabulated , A is the peak-to-peak ampli-
tude of the indicated cycle corrected for the instrument
response at the period T, and the constant 3.32 is the ap-

propriate distance correction factor . Recall that for all

the seismogram calculations there is no free surface near
the source.

The seismograms of Figures 6.1-6.3  are quite typical
of short period teleseisinic recordings of explosions. The

only anomaly seems to be for the dry sandstone events for
which the seismograms are in Figure 6.2. Note that the ap-

parent first motion in these seismograms is downward ; or at

least the upward motion is too small to be noticed . This

seems to be a consequence of the negative offset of the domi-

nant term, ~~~~~ that was discussed in connection with
Figure 4 . 2 .

One other point should be made about the short period
seismograms and 1%. The S wave contribution to the seismo-
grams is negligible. The only way the S wave energy leaving

the source can affect  the seismograms is through converted
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Figure 6.1. Synthetic short period seismograms for one
spherically symmetric and three cratering
calculations in granite. The numbers to the
lef t  are ground motion in microns at 1 Hz.
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Figure 6.2. Synthetic short period seismograms for four
cratering calculations in dry sandstone. The
numbers to the left  are ground motion in microns
at 1 Hz, Note that the apparent first motion
is downward. This appears to be a consequence
of the constitutive properties of the dry sand-
stone.
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TABLE 6.3

SU~-1~•~~RY OF mb VALUES FOR ATI C RATERING CALCULATIONS

Norrna1ize~
Identifier Depth r% 1% Period (?~~ T )/ ( a ~~u)

Granite

13 Spherically 6.29 0.81 0.93
Syrru~ tric

1 0.159 6.28 0.78 0.85

2 0.20 7 6.34 0.82 0.82

3 0.253 6.28 0.80 1.01

Dry Sandstone

4 0.159 5.48 0.96 0.96

5 0.207 5.56 0.88 1.09

6 0.253 5.55 0.86 0.94

7 (weak ) 0.207 5.80 0.93 0.86

Wet Sandstone

14 (l—D ) Spherically 5.88 0.79 1.00
SynTt~ tric

8 0.053 5.66 0.94 0.79

9 0.159 5.98 0.92 1.02

• 10 0.207 6.11 0.92 1.05

11 0.253 6.10 1.03 1.05

12 0.531 6.15 0.99 1.27
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Figure 6.3. Synthetic short period seismograms for one

spherically symmetric and five cra tering cal-
culations in wet sandstone . The numbers to
the left are ground motion in microns at 1 Hz.
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waves at the interfaces below the source (Table 6.1). There

is not even a free surface to contribute an sP phase. For

the velocity contrasts in the structure and the steep take-

off angles for teleseismic body waves, very little of the S

wave energy is partitioned into early arriving P waves.

It is interesting to examine how the nib scales with
the far—field displacement spectra discussed in Section V.

To first order we expect to have [Bache , et al., 1976],

1% log (ct~ 1i) ~ (6.2)

where u is the displacement spectrum at the controlling fre-

quency and a5 is the P wave velocity at the source. Using

the values of from Table 2.1 and u (1 Hz) from Table 5.1,

we normalize the amplitudes and scale to the value for
calculation 14. The normalized scaled amplitudes are tabu-

lated in the last column of the table. We see that all

values are within + 27 percent of the normalized amplitude

for calculation 14. Further , eleven of the fourteen are
scaled to within 15 percent by (6.2). The discrepancies are

mainly attributed to the fact that we are normalizing to the

spectral amplitude at 1 Hz while the frequencies controlling

the seismogram amplitudes range from 0.97 - 1.32 Hz. From

Figures 4.1 - 4.6 we see that the P wave spectra are complex

and rap idly changing in this region .
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VII . SURFACE WAVE MAGNITUDE, M
S

In this section we present our synthetic long period
seismograms for the fourteen ATI sources and give the
values for each. The synthetic seismogram calculations in-

clude the following elements:

1. The method for the surface wave calculations is
described by Harkrider (1964] and Harkr ider and
Archaxnbeau (1977]. The same equivalent elastic

source formulation used for the body waves is
used for the surface waves. Once again, only
the down—going waves from the source are in-

cluded in the calculations.

2. Two crustal models are used for the path , one
for the very near source region and one for the

remainder of the path to the receiver. The

average path model is one proposed for Nor th
America by McEvilly [1964]. The only difference

between the models is that the top three kilo-
meters of the source region crustal model is re-
placed by the ATI granite , wet or dry sandstone ,
depending on the source material. For the long

period s controlling teleseismic M5 the reflection
coefficient for Rayleigh waves passing across the
boundary between the source and average path
crusta]. model is close to unity.

3. The ground motion is convolved with the response

of an LRSM long period seismometer. A Q operator

which has only a minor effect is also included .

The Q model is that of Tryggvason (1965].

4. The seismograms were synthesized at a range of

3000 km. The M
~ 
was computed using the formulas

of Marshall and Basham [19721 . For this range
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the formula reduces to

M5 = log A + 1.38 + P(T)

where A is the maximum amplitude (zero-to-peak)

of the signal with period near 20 seconds and
P (T) is a period dependent path correction tabu-
lated by Marshall and Basham 119721 . The cor-

rection is quite small for periods near 20
seconds.

The vertical component Rayleigh wave synthetic seismo-
grams are shown in Figures 7.1 — 7.3. Two seismograms are

shown for the spherically symmetric contained explosions in
granite and wet sandstone (Cases 13 and 14). In one of these

(13b, 14b) only the downward waves are included in the ca l-
culation. The seismograms are then the analog of the Cases

13 and 14 body wave seismograms of Figures 6.1 and 6.3.
Since the M 5 is relatively insensitive to depth for contained
explosions (unlike which is strongly affected by the pP

phase) , we also compute seismograms for fu l ly  contained explo-
sions at a depth of 200 meters . The seismograms are given
as Cases l3a and l4a.

The important data from the seismograms of Figures

7.1 - 7.3 are summarized in Table 7.1. The phase at which

the amplitude for M was measured is indicated on the seis-

mograms by a bar. The period of this phase is given in the
table. Also listed in the table is the spectral amplitude

of the true ground motion at a period of 20 seconds. The
di f fe rence  between M and log A indica tes the consistency to
which the M5 measurement represents a true measurement of the
energy at frequencies in this range. These differences are

tabulated in the last column of Table 7.1. We see .iat the

M values are quite consistent wi th the spectral measurements
with the spread between the maximum and minimum values being
0.14 M5 units.
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TABLE 7.1

SUMMARY OF M5 VALUES FOR ATI CRATERING CALCULATIONS

Log Spectral

M ‘1 Period ~~~4t~~~ M -l AIdentifier Depth (]cn) s - s log A (20 sec) s og

Granite

l3A l—D Total Source 4.57 20.1 1.92 2.65

l3B l—D ~~wn Waves 4.34 21.5 1.62 2.72
Only

1 0.159 4.01 20.0 1.30 2.71

2 0.207 4.95 23.6 2.25 2.70

3 0.253 4.72 21.8 2.03 2.69

Dry Sandstone
4 0.159 4.66 22.0 1.92 2.74

5 0.207 4.68 22.7 1.92 2.76

6 0.253 4.60 22.5 1.83 2.77

7 (~~ak) 0.207 4.83 22.0 2.07 2.76

Wet Sandstone
l4A l—D Total Source 4.17 22.8 1.52 2.65

l4B l—D tX~wn Waves 4.26 20.0 1.53 2.73
Only

8 0.053 4.19 21.2 1.43 2.76

9 0.159 4.71 21.2 2.02 2.69

10 0.207 4.99 19.3 2.35 2.64

11 0.253 5.07 20.1 2.44 2.63

12 0.531 5.00 19.8 2.34 2.66
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Which portions of the wave field are most impor tant
for  the M5? This is an important question since we have more
con f idence in some portions of the calculation than others.
In particular , we expect the P waves to be computed much
more accurately than the S waves in our equivalent elastic
source calculation.

In Figure 7.4 we show surface wave seismograms for

several cases in which the S wave portion of the field has
been suppressed . The important data from these seismograms

is tabulated in Table 7.2. We see that the relationship

between spectral amplitudes and M
~ 

is essentially the same
as for the total field seismograms in Table 7.1.

The next step is to compare the S-suppressed seisnio-

grains to the total wave records and relate the results to
the amount of S waves present in the source. This is done

in Table 7.3. The S/P ratios are for the spectra at T = 70°

and are taken from Table 5.2. The cases we have selected

span the range of possibilities. For granite and wet sand-

stone we have the cases with the most and least S wave
component. The dry sandstone case has the least S waves of

all those studied .

From Table 7.3 we see that if the S waves are over-
estimated for Case 2 , and study of the spectra in Figure 4.2
indicates they may well be , we may be overestimating M5 by
0.2—0.3 magnitude units. Case 2 is by far the worst case.

The S waves seem to have little effect on M9 for the dry
sandstone calculations. For wet sandstone the smaller S/P

ratio acts to degrade M5 while the larger ra tio acts to
increase it. For the other three cases with S/P between the

extremes , the S waves are not likely to be too important.
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TABLE 7.2

SURFACE WAVE DATA FROM THE SEISMOGRAMS OF FIGURE 7.4

Log Spectral

M~ p~~-~~ 
1~mpl~ttxie, 

~~l ~~Identifier s s log A (20 sec) s

Granite

2 4.55 21.6 1.89 2.66

3 4.56 21.7 1.96 2.66

Dry Sandstone

5 4.64 21.8 1.93 2.71

Wet Sandstone

10 5.12 22.1 2.41 2.71

11 4.96 22.3 2.24 2.72

TABLE 7.3

COMPARISON OF DATA FOR TOTAL SOURCE AND S-SUPPRESSED
SURFACE WAVE SEISMOGRAM S

MT MP T PIdentifier S/P s~ s log A -log A

Granite

2 13.0 0.40 0.36

3 2.3 0.16 0.13

Dry Sand stone

5 0.54 0.04 —0.01

Wet Sandstone

10 4.9 —0.13 —0.06

11 11.6 0.11 0.20
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VIII. CONTRIBUTIflN OF EJECTA FALLBACK TO TELESEISMIC
MACN ITU DES

8. 1 BOUNDARY CONDITIONS

It-i carrying out the cratering calculations , ATI also

kept track of the material ejected from the crater . This

material falls back to earth and the impact is a source of

seismic waves. We computed the teleseismic body and surface

waves for the ejecta failback contribution to the cratering

source and the results are discussed in this section.

For the ejecta field ATI provided stress histories

on the free surface. At each point (or ring for this axisym—
metric problem) on the free surface , r = r , the time history

of the normal stress could be expressed as

P0
(r ,t) = A. (T.) (8 .1 )

where

t — t.
1.Ii 

— _______

(l~ x~ <

t (x) = !

>

and ~t is the time step, while A~ is the amplitude of the
normal stress at the ~th time step.

We observe that

aD . UJAt

~~~
C fl(T

~~
) }  J ~~ 

(t t i)  
e~~~

t dt = 2 
Slfl 

~~
—

~~
-—) 

e
_1Wt

j
.

(8.2)
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Then the normal stress boundary condition applied at r = r is

- wAt  N2 sin (—) —iwt .
P0

(r ,w) = 2 

i=l 

A. e , (8.3a)

and for the shear stress it is

• wAt N2 sin (—) —iwt.

Q0
(r ,w) = 

2 

i=l 
B~ e , (8.3b)

where B. is the amplitude of the applied shear stress at the

~th time step.

The boundary conditions (8.3) are in the correct

form for applying the theory developed in Appendix E. The

total stresses on the surface enter the solution via the

spatial integrals (33) of that Appendix . The quadrature is

straightforward since the spatial dependence of the stresses

is also in terms of rectangle functions. For example , for
the normal stresses it is necessary to compute

~~~~~ 
=f P

0
(r ,w) J

0
(k~~ r )  r d r~ (8.4)

for each frequency Uk for subsequen t transformation back to
the time domain. Here kRk represents the wave number for
the fundamental mode at f requency wk~ 

Then

b N
—1w t.

P(wk) =J ~k 

~~l 

A~~(r) e 
k 1 J0

(k~~ r ) r d r ,

(8.5)
N . bLw t •

= 

~k 
e k 1 f  A~~( r ) J 0 (k~~ r )  r~ dr ,
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where

At
2 sin 

2~~~
U
k

Since A . ( r ) is piecewise constant :

A .(r ) = A.., a. < r < b.,
1 1J J — J

this reduces to

= 
~k 

~~~~~~ 

e

1
~~~~~

t
j  

~ 
~ ~~~~ 

b~) 
- a~J1(k~~ a~~

)] 
-

(8.6)

A similar procedure is followed for  the 
~~~~~ 

except that
quadra tures  are used to evaluate the integrals

I J1
(k~ r )  r d r .

Then with and Q(w
k
) we can proceed to compute tele-

• seismic body or surface waves using the formulas  (35)  and
(44) of Appendix E.

8.2 SURFACE WAVES FROM EJECTA

Surface  wave seismograms were computed for the ejecta
~~e1d for several cases. The seismograms are shown in Figure
8.1. The seismograms were computed at a range of 4000 km
r~ither than the 3000 km range used for the records of
Section VII . In order to see the effect of range on
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(the distance correction factor in the M formula may differ

from t1~ie actual amplitude decay), we computed a seismogram

at 3000 km for two of the cases.

The data for the ejecta surface wave seismograms are

summarized in Table 8.1. The explosion M5 is from Table

7.2. The difference between the two M5 values gives a rea-
sonable approximation to the relative amplitudes . For

example , when the difference is 2, the amplitude of the ejecta
surface wave at periods near 20 seconds is about two orders

of magnitude smaller than that of the surface wave from the

explosion coupling directly into the ground . In fact, for

the two cases (1 and 3) for which we have seismograms at the
same range (3000 kin) , we compare the amplitudes directly in

Table 8.2.

It will su f f i ce  to examine Case 1 since for this case
we have the largest ejecta surface wave together wi th the
smallest dir ect explosion surface wave. The compar ison of
M values in Table 8.1 suggests that the amplitudes of the

20 second portion of the wavetrain should differ by a fac-

tor of about 6.5. The actual ratio is available from the
numbers in Table 8.2 and is about 6.8. The maximum ampli-

tudes d i f f e r  by considerably more , however , with the ratio
being about 34.

From the analysis of the previous paragraph we see

that if the ejecta contribution were exactly in phase with

the direct explosion surface wave, an un likel y circumstance ,

the maximum contribution (Case 1) would change the ampli-

tude by 15 percent or 0.06 magnitude units. For all

the other cases the possible ejecta contribution is at

least an order of magnitude less than this. Therefore , we
feel justif ied in ignoring the éjecta contribution to the
surface waves.
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TABLE 8.1

SURFACE WAVE DATA FROM EJECTA SEISMOGRAM S

Ejecta M5 Ejecta ~ cplosion
Identifier Parse (I~~) M5 — M

5 Difference

Granite

1 4000 3.22 4.01 0.79

1 3000 3.20 4.01 0.81

2 3000 3.21 4.95 1.74

3 4000 2.90 4.72 1.82

3 3000 2.66 4.72 2.06

Dry Sandstone

4 4000 2.17 4.66 2.49

5 4000 1.51 4.68 3.17

Wet Sandstone
9 4000 2.91 4.71 

- 1.80

TABLE 8.2

COMPARISON OF SURFACE WAVE AMPLITUDES AT 3000 km

(Amplitudes are in nm and are corrected for instrument res-
ponse)

M M r1aximr~m Pericx~1 of
Identifier ?~~lithde Period ~znplitix~e Maxhtum Cycle

1 ~cplosion 425.0 20.0 5435.0 11.3

1 Ejecta 62.0 22.0 158.0 16.3

3 Explosion 2081.0 21.8 11,242.0 14.3

3 Ejecta 17.7 22.0 70.0 15.6
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8.3 BODY WAVES FROM EJECTA

We saw in the previous paragraph that the ejecta is
unl ikely  to have any noticeable ef f ect on the surface waves
or M . Since the source terms, P(w) and Q(w) of Appendix E ,
are the same for both cases , they would have to be strongly
peaked (values at 1 Hz larger than at low frequencies) for

there to be any chance of an ef fect on the short period body
wave records. However , as is reasonably clear from (8.3) or

(8.6), the source spectra have their largest values at low
frequencies and decay rap idly with increasing frequency.  The
spectral values at the nib freqt~encies are down by at least
an order of magnitude from the values at M 5 frequencies.
Therefore , we can ignore the ejecta contribution to the short

period recordings.
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IX. TELESEISMIC MAGNITUDES FOR 37 .5 AND 600 kt

9.1 SOURCE SCALING

If we assume cube—root scaling is applicable, we can
scale our results to obtain 

~
1b and M for cratering explo-

sions with yields di f f erent than the 150 kt at which the
original calculations were made. The amplitudes of the curl

and d ivergence of the d isplacement field are unchanged by
the scaling , but the distance and time scales are rnul tipled
by a factor (Wn/l50)

h/
~
3
~ where Wn is the new yield .

The basic representation of the source for computing
teleseismic body and surface waves is in terms of the multi-

pole coefficients, ~~~~ (w) , in the frequency domain. It is

easily shown that cube—root scaling implies that the scaled

mul tipole coefficients for the new yield are related to the
old coef f icients by

w 1/3

~~~~~~ ( w )  = 
(yb) ~~~~ (w) , (9.1)

where

/l50\1/
~
’3

~n = lw— I
\ f l /

To compute seismograms for the scaled source we need to

scale the multipole coefficients as indicated and then to

follow through the procedures outlined in Sections VI and
VII.

9.2 BODY WAVES FOR SCALED SOURCES

We compute seismograms for the sources of Table 3.1

at two new yields , 37.5  and 600 kt. The scale factor is
then the cube-root of 4 and its reciprocal. The seismograms
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Figure 9.6. Synthetic short period seismograms for the wet
sandstone sources scaled to 600 kt.
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TABLE 9.1

SUMMARY OF nib 
DATA FOR 37.5 AND 600 kt EXPLOSIONS

37.5 kt 600 kt

Identi f ier  ni
b 

ni
b 

Period ni
b 

ni
b Period

Granite

13 (l—D) 5.70 0.79 6 . 8 2  0 .85
1 5.54 0.67 6.82 0.91

2 5.68 0.73 6.82 0.92

3 5.54 0.69 6.80 0.92

Dry Sandstone

4 4.94 0.79 5.65 0.79

5 5.04 0.78 5.70 0.78

6 5.07 0.79 5.69 0.79

7 (weak) 5.31 0 .80  6.13 0 . 7 7

Wet Sandstone

14 (l—D) 5.27 0.79 6.44 0.80

8 5.00 0.72 6.06 0.77

9 5.43 0.79 6.36 0.77

10 5.68 0.83 6.50 0.78

11 5.69 0.84 6.18 0.71

12 5.62 0.79 6.27 0.87
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are shown in Figures 9.1—9.6. The rn,0 data from these seismo-

grams are summarized in Table 9.1. Once again , the phase at

which the rri,~ is measured is indicated on the seismograms .

In Table 9.2 we compare the data for the three yields.

We take the difference between the rn,0 for 150 kt and the nib
values for 37.5 and 600 kt. The column marked “Factor ” is

then the antilog of this difference. We also show the ratios

of the periods of the nib phases for the two yield pairings.

If the source spectra were flat throughout the

band of interest , the “Factor ” values in Table 9.2 would

all be 4.0. The values that appear in the table indicate

the complexity of the source. This is clearly illustrated

by comparing the seismograms for the same cases in Figures

6.1—6.3 and Figures 9.1—9.6.

Comparing- the 37.5 kt records to the 150 kt records ,

the behavior is more-or-less as expected . Sometimes the
amplitude scales by more than a factor of 4, sometimes by

less. The periods are shorter on the 37.5 kt records by a

fairly uniform ratio throughout. For the 600 kt granite

events , the results are also within the range of expected

behavior.

The comparison of 600 kt and 150 kt records for the

wet and dry sandstone gives some surprising results. The

amplitude ratios are considerably less than four for all

the cratering events. Further , the periods for the 600 kt

nib are actually shorter than for the 150 kt m,~. In fact ,

the periods for the 37.5 kt and 600 kt sandstone seismograms

are about the same. The anomaly seems to be due to the

interference pattern in the ni
b portion of the wavetra in .

A strong interfering phase is clearly visable on the 600 kt
records for Cases 4, 5, 6, 11 and 12. Looking at the data

of Table 9.2 , these are the events for which the nib is

smallest compared to the expected values from scaling the

150 kt amplitudes by four.
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The failure of the body wave amplitudes to scale

exactly with yield is a functior~ ~~ the complexity of the

source spectrum in th~ short period region. However , the

long period or M9 portion of the spectrum is flat (Figures

5.1-5.6). Therefore , there is rio reason to expect the M

values to change by any value other than the log of the

yield ratio or + 0.60.
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APPENDIX A

EQUIVALE N T ELASTIC SOURCE

The radiat ion f ie ld  exterior to any kind of volume

source in a homogeneous medium can be represented in terms of

an expansion in spherical harmonics. Archambeau (1968) seems

to have been the first to recognize the usefulness of this

fundamental result and to apply it to geophysical problems.

The expansion in spherical harmonics gives a compact equiva-

lent  elastic source representat ion of quite general character

and nearly any proposed seismic source model can be cast in

this form . A brief description of this source representation

and its compatibility with commonly used source theories is

the subject of this section.

The Fourier transformed equations of motion in a homo—

gerieous, isotropic , linearly elastic medium may be written

= — 
(s-

) ~~ + (
~

-
~
.) v x ~ , (1)

where ~ is particle displacement and kc~ 
and k~ are the

cornpressional and shear wave numbers. The Cartesian poten-

tials and T are defined by

—(4) —
x =~~7 u

(2)
— 1 —

and may be easily shown to satisf y the wave equation

V 2
~~~~

j )  
+ ~~~~~~ = 0, 

~ 1, 2, 3, 4, (3)
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where k k = u / i . and k. k~ = w/~ for  i = 1,2,3. This

equation has as a solution the following expansion in spherical

eigenfunctions (e.g., Morse and Feshbach (1953)),

(R,u) = 

~~~ 

h~
2
~ (k R) 

~~~ 

(u) cos m~

+ ~~~~ (w) sin m~
J 
P~~(cosO) , (4)

where the h52
~ are spherical Hankel functions of the second

kind and the P~
’ are associated Legendre functions. The

vector R has as components the spherical coordinates R,O ,~~.

Equations (4), together with (1), provide an elastic

point source representation of the (outgoing) displacement field.

The values of the m-.iltipole coefficients , ~~~~ ( iA ~ ) ,  3~~~) 
C u ) ,

j  = 1,2,3,4, prescribe the displacement field at all points in

the homogeneous medium where (1) applies. This point source

representation can be viewed as a generalized form for a sum

of a monopole or center of dilatation (Z = 0), a dipole or

couple (2. = 1), a quadrupole or double—couple (2. = 2), etc.

For example , a center of dilatation is represented by a single

coefficient ~~~~~ while for a horizontal double—couple the

nonzero coefficients are —A~
1
~ = B~

2
~ = A~

3
~ and ~~~~~21 2 1  2 2  2 2

Description of the character of the elastic f ield gene-

rated by seismic sources is, of course, a basic geophysical

problem. For this paper it is convenient to discuss seismic

source descriptions in three categories:
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1. Those obtained using finite difference/finite

element numerical methods.

2. Analytical source models of relaxation type.

3. Dislocation source models.

With numerical methods one can attem1~t to directly in-

clude complexities of the source mechanism in a deterministic

computational scheme. For example , f in i t e  d i f fe rence  method s

have been extensively used to compute the propagating shock

wave due to an underground nuclear explosion (e.g., Cherry ,

et al., 1974) . In this case the nonlinear behavior of the

rock under high stress loading determines the character of

the seismic signal. If the source region can be assumed to

be embedded in a medium in which (1) applies , an equivalent

elastic source of the form (4) can be obtained from the out-

going displacement field. This is indicated schematically in

Figure 1. Briefly, the procedure is to monitor the outgoing

displacement field or, alternatively, the potentials ,

on a spherical surface of radius L Using the orthogonality

of the spherical harmonics , these potentials are related to

the multipole coefficients by

(u) 2rr 71 cos rn~
= ( )  

~ f f ~~~~ ~~~~~~ P~~(cos8) ~sinOdOd~ ,

~ ~~~~ (w ) j h2. (k~R) 0 0 sin m4

where

— (22.+l) (2.—rn) 1 0C2. 
— 

27r (2.+m) , m ~

C = (2Z+l)/471
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VRadiated
Elastic Waves

Elastic Material
Homogeneous, Isotropic

Arbitrary geometry,
______ 

constitutive properties 
______

Elastic Radius

Figure 1. Schematic display of the determination of an
equivalent elastic representation for an arbitrary
volume source.
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Use of this procedure for linking nonlinear fini te dif-

ference source calculations with analytical wave propagation

techniques was suggested to the first author by Archambeau

(1973 , personal communication), and has since been implemented

for a number of complex explosion geometries (Cherry , et al.,

1975 , 1976a), and for a three—dimensional finite difference

simulation of stick-slip earthquake faulting (Cherry,

et al., l976b). The number of terms required for the expan-

Sion (4) to converge depends on the symmetry of the source

radiation at frequencies of interest. The most elementary ap-

plication of the method is for one—dimensional (spherically

symmetric ) explosion source calculations. For such problems

the elastic field is often described by a reduced displacement

potential defined by

R — ~ _______
R

Applying the Fourier transform and comparing to (1) together

with (4), it is easily derived that

(4) . 3A (~~) = —i k ‘Y (u) , (7)
00

which shows the equivalence between the reduced displacement

potential and the rnonopole. For more complex sources such

as an explosion in an axisymm etric tunnel (Cherry , et al.,

1975) or several explosions detonated simultaneously (Cherry ,

et al., 1976a) quadrupole and higher order terms occur in

the expansion . When an earthquake source is computed , the
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leading term is , as expected , the quadrupole (Cherry , et al.,

l976b)

p
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APPENDIX B

APPLICATION OF THE MULTIPOLAR EXPANSION TECHNIQUE

TO CRATERING EXPLOSIONS

In Appendix A is outlined the procedure for obtaining

an equivalent elastic source representation of an arbitrary
volume source. In particular , we evaluate the integrals
(A.5) to obtain the multipolar coefficients (A~~~ (u),

B~
1
~ (w)) that define the equivalent elastic source . With

these multipoles the displacement can be computed from

(A.l) and (A.4) at any point in space.

The procedure outlined in Appendix A gives a unique
and exact representation of the outgoing wave field when

the following conditions are satisfied :

1. The spherical surface at the “elastic rad ius ”

is in a homogeneous , isotropic , l inearly
elastic medium .

2. No energy travels inward through this surface.

3. A sufficient number of terms are computed to

insure convergence of the in f in ite series, Eq.
(A.4) of Appendix A.

The ideal conditions listed above are cer tainly not
satisfied in the problem of interest. The most obvious

and important difficulty is the presence of a free surface

To understand the ef fect of the free surface , we should
first describeS the relevant features of how our technique

works. First, the mul tipolar form can only represent waves
that are solutions to the whole space wave equation; that

is , body waves of compressional or shear type. Due to the

presence of the free surface , there will be surface waves
of the Rayleigh type in the numerical solution. These waves

can never be properly represented in our mul tipolar solu-
tion. The solution will “see ” the Rayleigh wave displacements
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as some combination of P and S waves and will try to repre-

sent them in that form . In subsequent paragraphs we will

explore the effect of the Rayleigh waves in more detail and

argue that they do not seriously compromise our solution .

The second characteristic of our equivalent elastic

source determination technique that needs to be understood

is the way in which energy is partitioned into the various
multipoles. It is the symmetry of the outgoing displacement

f ield that controls this partitioning via the integral
(A.5). We see from Eq. (A.5) that we operate on the diver-

gence (~~~~~~~

4

~~~~~ (~~~~~,~~~~~) )  and curl (~~~~~(R,u), i = 1,2,3) of the

displacement field separately. As an illustrative example ,

let us assume that we have an axisyrnm etric source in a ho-
mogeneous whole space and examine how the propagating di-
vergence is partitioned into the mul tipole coe ff i cients

(w), ~~~~ (w). Since the ~~4) is independent of ~~, the

only non-zero multipoles are A~
4
~ (w). Then , from (A.4),

the divergence is wri tten as fol lows :

= h~
2
~ (k R) ~~~~ (w) P~~(cos9) (8.1)

That is , each frequency component of the source generated
displacement field is made up of a sum of terms with symmetry
specified by the Legendre polynomials. The radiation pattern

for the first several terms is shown in Figure B.l. Then ,

for example , if the divergence , ~~~ of the displacement
field exhibits considerable spherical symmetry, the solution
will be dominated by the f i r s t  term in B.l  and the higher
order terms will represent the deviation from this symmetry.
The same kind of process operates for the curl and the argu—

:nents are easily extended to a more general (not axisyrnlnetric)
source.
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-~~~~~~~~~~~ ~~~~~~~~~- 
I~ 

I
I 

~- _H.5... -

(nonopole) P~ (dipole) P~ (quadrupole)

f’
1 (i~

p
~ P~ P~

Figure B.1. The radiation patterns for the first several
terms of the expansion of the divergence for
an axisyitunetric source. The P~ is the radia-
tion pattern for the A~~ ) (w ) coefficient (see
Eq. B.l).
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We have pointed out that  the symmetry of the source
determines the partitioning of energy into the various

terms of the series. But for the cratering calculations

the displacement field is computed on only one hemisphere .

It is necessary to assume values on the other hemisphere to

compute the multipole coefficients. The way this assumption
is made can have a substantial influence on the solution .

Let us now look more closely at the problem of im-
mediate interest as we describe our modification of the

multipolar expansion technique for this application. In

Figure B . 2  the geometry and coordinate system for a typical
calculation is shown. The explosion is at a depth , h , in

a homogeneous half space. The rad ius , Re~ 
on which the curl

and divergence of the displacement field is monitored varies

from 2.3 h to 24.5 h for the twelve calculations to be

studied , though it is between 5 h and 10 h for most of them.

Now , how are we to select values f or the curl and

divergence in the upper hemisphere (9E(0 ,-ir )) in order to

make the data compatible with our multipolar representation?

The simplest and most natural choice is to make the data

in the upper hemisphere depend on that in the lower hemi-

sphere in some simple f ashion.

In Appendix C we discuss the mathematical consequence

of certain kinds of source symmetry . There are two cases

of par ticular interest; tha t of axisymmetry plus vertical
symmetry which is characterized by

= ( 8 ) ,

(1) (71-9) = -x (1) (0),

X~~
2
~ 

(71-0) = X~
2
~ 
(0),

and is discussed in Section C.2.2 and that of axisymrnetry

and ver tical antisymzn etry :
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z

/ (

7
/ Surface

~~~~~~~~~~~~~~~~~~;oniinear 2
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Ela stic
Radius , R

I 

e

Figure B.2. The geometry and coordinate system for the
cratering calculations . The solution is inde—
pendent of the azimuthal coordinate .

76



R— 3119

(~ -0)  = 
~~~~~~~ 

( 8 ) ,

(~~~9) = (0 ) ,

x~
3
~ (71-0) = X~

2
~ 

( 0 ) ,

discussed in Section C.2.3. The non—zero multipole coeffi-

cients for these two cases are listed in Table C.3. In

Figure 8.1 we showed the radiation patterns for each term
in the multipolar expansion of the divergence or P wave
portion of the displacement field . If we assume vertical

symmetry the even order terms (monopole , quadrupole , etc.)

will, be non—zero. If, on the other hand , vertical anti—

symmetry is assumed , the odd order terms are non—zero .

The radiation patterns for the lower order terms are

important because these terms dominate the response at
long periods. In fact, we can be certain that the very
f i r st term , rnonopole or dipole depend ing on the symmetry
chosen , will be the only term that matters for computing
far—field surface waves and M . Therefore , let us look

S
at the radiation patterns for the S wave coeff ic ients .
From Table C.3 and Eq. (A.4) we see that the radiation pat-

terns are given by the Legendre functions P~~(cos8) with 2.
even for vertical symmetry and 2. odd for vertical anti-

symmetry. These patterns are plotted in Figure 8.3.

How are we tu choose the most appropriate vertical
symmetry? The f ir st suggestion that comes to mind is to
examine the angular variation of the computed data at
various time points. Typical radiation pattern plots of

the data are shown in Appendix D where we describe several

~a1culations in considerable detail. We see that these

radiation pattern plots are not much help. There are at

least four reasons why this is so :
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z z

(dipole) (quadrupole)

P1 P13 4

Figure B.3. The radiation patterns for the first several
terms of the curl for an axisymmetric source.
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1. The calculated divergence and curl include the
influence of Rayleigh wave s at late times.
We want to choose a symmetry that minimizes
the effect of this contribution .

2. The numerical calculations are noisy. Our multi-

polar source representation should act as a

smoothing f i lter that pulls the important signal
from this noisy data.

3 . The calculations are really not yet complete ;
that ~s, energy is still propagating through the
elastic radius at the last time point. We are

mainly interested in imposing the right symmetry
at long times as the high frequency solution is

much less dependent on this choice.

4.  Our real interest is in the radiation patterns for
the far-field component of the source (that portion

decaying as R”1). The patterns for the computed

data are strongly influenced by near-field terms.

We can attempt to gain some insight with analytical
methods. lunong the class of simple problems , perhaps the
closest to the creating calculations , at least at long times ,
is the case of a vertical poin t force on the surface of a
homogeneous half space. The far-field radiation patterns

f or the divergence and cur l are shown for this source in
Figure B.4. We see that the P wave pattern is very much

like that of a dipole (see Figure B.l). This suggests that

vertical antisyxnmetry should work very well for the P wav~e

portion of the radiation field . For the S waves vertical

symmetry would probably be a better choice since the cur l
radiation pattern in Figure B.4 looks more like a quadrupole.
But from Appendix C , especially Tables C.1 and C.2, we see
that choice of d i f fe rent symmetries for the curl and diver-
gence leads to inconsistencies in the displacement field .
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Divergence Curl

Figure B.4. Far—field radiation patterns for the divergence
and curl due to a point’s load on the surface
of a homogeneous halfspace.
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Therefore , we choose vertical antisymm etry and represent
the field as a sum of terms of order 1, 3, 5 

It turns out that we need not be overly concerned with
the accuracy of our S wave representation anyway. This is

because the S waves must be many times larger than the P

waves, a most unlikely circumstance , to have an appreciable
effect on either or M

5. This point is addressed in the

main body of the report, Sections VI and VII.

What about the contribution of locally generated Rayleigh
waves to our solution? First, we point out that the dis-
placements due to the Rayleigh waves will only affect the

solution in the region near the free surface. Referring
to Figure 8.2, we don ’t expect the Rayleigh waves to be of
importance for takeoff angles, T, less than say , 60°.

Second , the Rayleigh wave has a much greater effect on the
S wave or curl portion of the field than on the P wave
portion. These points were validated by an elastic test

problem where we applied our procedures to the field from a
point source on the surface of a homogeneous halfspace. Once

again , we expect the errors to be greatest in the S wave
tt~rms and at long periods. Fortunately , the P wave terms

are dominant for m
b and M determinations.
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APPENDIX C

PROPERTIES OF AN AXIALLY SYMMETRIC SEISMIC SOURCE

C.1 SYMMETRY PROPERTIES OF THE DISPLACEMENT AND POTENT IAL
FIELDS FROM AN AXIALLY SYMMETRIC SOURCE

In studies of the ground motion from many sources the
calculation is greatly simplified if the seismic source
possesses the axial symmetry. Teleseismic ground motion
from many complicated seismic sources can then be computed
by merging a 2D nonlinear f inite di f ference source calcula-
tion with the elastic wave propagation methods of theoreti-
cal seismology. This has been accomplished routinely at S3

by means of an equivalent elastic source representation of
the seismic source. The theoretical foundation for this

representation appears in a section of a recent paper by
Bache and Harkrider [1976]. This section is reproduced as

Appendix A of this report.

Many sources not only possess axial symmetry but also

exhibit an additional physical symmetry with respect to the
plane normal to the axis of symmetry . We will refer to

two special cases of this symmetry, that of vertical sym-
metry and that of vertical antisymrnetry. Then for axially

symmetric sources , three types of symmetry will be dis-
cussed:

1. Axial symmetry.

2. Axial symmetry and reflection symmetry.

3. Axial symmetry and reflection antisymmetry .

A seismic source exhibits axial symmetry if the source
is invariant under rotation about a given axis, say the
z-axis. As a consequence of this symmetry , the par ticle
displacement field must be invariant with respect to
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rotations about the z—axis and consequently have no azimuth

component. Since the field is independent of the azimutha l
coord inate , 4 ,  the problem can be reduced to two dimensions.
This results in a substantial reduction in the computational
effort. In general , for an axially symmetric source the 2D
finite difference calculation can be limited to an area en-
closed by a semi-circle (0° < 8 < 180°). In the special

case where the source exhibits either vertical symmetry or

antisymm etry, the 2D so-~rce calculation can be fur ther
limited to a single quadrant (0° < 8 < 90°). The calcula-

tion of the multipole coefficients representing the equiva-

lent elastic source requires a double integration in the

spherical coordinates ~ and 8 over a spherical surface in
the elastic region that completely surrounds the nonlinear
zone containing the seismic source. For an axially symmetric

source , however , this surf ace integration can be reduced to
a single integral along a circular arc in the elastic region.
This linkage between the 2D f inite difference source calcula-
tion and the elastic wave propagation methods of theoretical

seismology is accomplished by the MULTEES series of compu ter
programs which calculate the multipole coefficients for the
equivalent elastic source. The 2D source calculation must

be carried out into the elastic region where time histories
can be saved for the displacement potentials , which are de-
f ined below in terms of the divergence and curl of the dis-
placement field. These time histories are generated at a

Set of monitoring stations that are either (1) on the arc

of fixed radius in the elastic region for a 2D calculation

in polar coordinates (r , 8); or (2) in the neighborhood of
an arc in the elastic region for a 2D calculation in rec-

tangular coordinates (Z,Y). MULTEE S performs all of the
operations required to transform the 2D variables for the
calculation of the mul tipole coefficients , in the latter case
including a 2D spatial interpola tion to evaluate saved
variables on a circular arc . The MULTEES programs are
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described in Bache , et al. [1975]. A typical 2D section of

an axially symmetric source at fixed azimu thal angle -~ is
illustra ted in Figure C.l. The Z—axis is the axis of sym-
metry and the X-Y plane is a possible plane of symmetry.

The relationship between Cartesian (1,2,3), spherical (R,O ,~~)
and 2D finite di f f e rence code (Y ,Z) coordinate system is also
illustrated.

The symmetry properties of the particle displacement
f ield will be used to derive the symmetry properties of
the scalar (dilatational ) displacement potential and the
vector (rotational ) displacement potential. The vector and
scalar potentials are defined in terms of the displacement
f ield u (r ,t) by,

x = 4 v
(C.l)

(4)x = V u.

The symmetry properties of the displacement potentials will
then be applied to derive the nonzero rnul tipole coefficients
for the equivalent elastic source representation of axially
symmetric sources in each of the three classes defined
above .

For an axially symmetric source the displacement field
is invariant to rotations about the Z—axis and has no azi-

muthal component. As a consequence , the dilatational poten-

tial x~
4
~ must be independent of ~ and the rotational

potential 
~ 

must have only a single non-vanishing component
in spherical coord inates , which is also independent of
q . For an axially symmetric source the non-vanishing dis-
placement and potential components in spherical coordinates
are
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1 - 7

7
R

8

)
(

Figure C.1. Coordinate system for an axially symmetric
source at f ixed azimuthal angle . The inset
illustrates the relation between the Cartesian
(1,2,3), spherical (R ,e ,4,) and 2D finite dif-
ference code (Y ,Z) coordinate systems.
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U (R ,O ,4,t) = u ( R ,O ,t )

u9 (R,O ,~~,t) = u (R,8,t) (C.2)

u~~(R,8,~~,t) = 0

= 0

= 0 (C.3)

= (R,G ,t)

The Cartesian coordinates of the displacement potentials are

(R,8,~~,t) = - sine X~~(R,8,t)

(R,6,~~,t) = cos~ (R,e ,t)

(C.4)

(R,O ,~~,t) = 0

X~
4
~~(R,8,~~,t) = X4(R,8,t)

Note that if the 2D f ini te  di f fe rence  source calculation is
carried out in the YZ plane, then one can identi fy the azi-
muthal component x~ as ,

X~~(O ,Y , Z , t) = — 
~
. (curl U] = — 

~~

‘ (
~~ 

-

Because of the reduction in the number of non-vanish-

ing spherical components of u and x~ the symmetry properties
that are characteristic of an axially symmetric source can
be first expressed for the spherical components and then de-

rived for Cartesian coordinates by means of the coordinate
transform ation for any vector A ,
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A
1 

= sinO cos~ Ar + cos O cos~ A9 — sinc~

A2 
= sin e sin~ Ar + cosO sin~ A0 + cos~ A~ (C.5)

A = cosO A - sinO A3 r 0

The symmetry properties of an axially symmetric source

are given for the particle displacement field in Table C .1.
The symbols u, v, and w represent the X , Y and Z components
of the displacement field u. Values for these components

in the second , third and fourth octants are related to their
corresponding value in the first octant. If either case of

vertical symmetry obtains , an additional relation exists for
points below the Z = 0 plane (fifth octant). Consequently,

displacement, velocity and potential components at all points

on the sur face of a sphere in the elastic reg ion can be de-
rived from the time histories saved on the circul ar arc
0° < 9 < 180° for axial symmetry or on the arc 0° < 0 < 90°

for axial plus vertical (anti) symmetry.

The symmetry properties of the dilatational and rota-
tional displacement potential can be derived from those for
the displacement field. The results of this derivation are

given in Table C.2. One example illustrates the methcd

employed. From the defini t ion of the rotational potential ,
Eq. (C.l) and the symmetry properties for vertical symmetry ,

(1) 1 1 /~ w ~vx = [curl U] = -
~~

. (~~
— -

Z 
- ( C . 6 )

(1) 1 13 (— w) ~v \ (1)x (x ,y , — z )  = 

~y 
— a ( — z))  = — x (x ,y, z)

As a consequence of the symmetry properties , the
following boundary conditions will apply :
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TABLE C.l

SYMMETRY PROPERTIES OF THE DISPLACEMENT FIELD FOR AN AXIALLY
SYMMETRIC SOURCE

Field components in the 2nd , 3rd , 4th and 5th octants (column
2) are related to their values in the 1st octant (columns 3-
5)

(u,v,w = X , Y and Z components of particle displacement) .

Axial
Field Symmetry Vertical Vertical

Octant Component Only Symmetry Antisyrnmetry

5 ur (r , Tr_ O ) * +u (r , 0) —u (r,9)

u0 (r,
-ir—0 ) * —u 0 (r,0) +u

8
(r ,0 )

5 u (x ,y, —z) * +u (x ,y , z) — u (x ,y , z)
v(x ,y,—z) * +v (x ,y , z)  —v (x , y , z)
w(x , y , —z) * — w (  ) +w(

2 u ( — x ,y , z) — u ( x , y , z)  —u (x , y , z) — u (
v (—x ,y , z) +v( ) +v( )

w ( -x ,y , z)  +w(  ) +w( ) +w(

3 u(—x ,—y,z) —u( ) —u( ) —u(

v (—x ,—y,z) —v( ) — v (  ) —v(

w (-x ,-y,z) +w( ) +w( ) +w(

4 u (x ,—y,z) +u( ) +u( ) +u(

v(x ,—y, z) —v( ) —v( ) —v(

w(x ,-y,z) +w( ) +w(  ) +w(

Relationship undefined
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TABLE C. 2

SYMME TRY PROPERTIES OF THE DISPLACEMENT POTENTIALS FOR AN
AXIALLY SYMMETRIC SOURCE

Field components in the 2nd , 3rd , 4th and 5th octants (column
2) are related to their values in the 1st octant (columns 3—
5)

(x~~ , x~~ , x ’
~ = X , Y and Z components of rotation dis-

placement potentials).

Axial
Field Synn~tiy Vertical Vertical

Octant CanpDnent Only Symretry Antisyniretry

5 X~~(r ,~T— ê) * —X~ (r,0) +X~ (r,0)

(1) (1) (1)5 x (x ,y,—z) * —x (x ,y, z) +~< (x ,y, z)
(2) (2) (2)x (x ,y, —z) * —x ( ) +~ (

* 
~~~~~ (x,y,z) ~~~~~

2 x~~~(—x ,y, z) +X~’~ (x ,y, z) +~m (x,y, z) +~W (~ ,y,~)

(-x,y,z) ( ~~ (2) 
÷

(2)

( ) ( ) ( ) (

(—x ,—y,z) (1) 
( ) X~

’
~ (

(2) (2) (2) (2)x (—x ,—y, z) —x ( ) —x ( ) —x (

( ) ( ) ( ) (

(x,—y,z) ( ( )(
(1) 

(

) ( ) ( ) (

*Relationship undefined
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performing the appropriate transformations to the source
coordinate system.

The multipole coefficients in the time domain (see
Bache, et al. (May, 1975]) can be expressed as

~~~ (R,t) 2IT iT

= CLm f  f  x~~ (R , e ,~ ,t)
(R,t) °

(COS m 4 )
x (cosO) sinede ~d4 ,  (c . 1O)

~sin ~~
where

~~~~~~~ 
(9.—rn)

CL = 4rr(L+m)!

with = 1 and £ = 2, in ~ 0 and are associated Legendre
functions; the double integration is carried out on a sphere
of radius R in the elastic region and ~ = 1,2,3,4 corres-
ponds to the dilatational (a=4) and rotational potential
(cz=1 ,2,3).

C.2.1 Axial Symmetry Only

The case in which the seismic source exhibits only
axial symmetry will be considered first. The integration
in can be carried out explicitly by utilizing the follow-
ing integral properties:

~~~cos in~ 1 1 0 rn ~ 0; 2n m = O~f
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2ir
1 ~~~~ m~ ) (0

J sin~ ~~~ = (C.12)
0 ~cos m~4 ~ir m = 1 ~

2n ( u  r n = ] . )
J cos~~ dq = t (C.13)
0 ~sin m~

Since the dilatational potential x ’4~ is independent of ~~,

the only nonvanishing P wave multipole coefficient must have
in = 0 ,

(R , t)  = 2iT C~0 f  ~~~~ (R , 8 ,t) P L (cose) sinO de ,

(2. = 0 ,1, 2 ,3 , . . . )  (C. 14)

~~~~ (ik , t) = 0 (C. 15)

Using the relationship (Eq. ( C . 4 ) )  between the two nonzero
rotation potential components and x~

2
~ and the azimuthal

potential 
~~ the rotation potentials can be reduced to the

following single integrals.

(A ~~ (R,t) 2irm 
= CLmf X~ (R,8,t) P~ (cos8) sine d8( ~~~ (R,t) 0

~cos rn~~
xJ (—sin$ ) ~~~ (C.16)
0 (sin m~ )

(R,t) 0 (C.l3)
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~~~ (P,t) - ~ ~ 2.1 f X~~(R , 0 , t) P~ (cosO) sine do ,

(L = l ,2,3,...) (C.l8)

(R,t) iT

= Ct~ f X~~(R , O , t) P~ (cos~) sinO dO( ~~~ (R,t) 0

2 n
~cos m~~)

xJ cos~ 
-
~ ~d 4 ,  (C.19)

0 
(sin m~)

A~~~(R,t) = C2.1 f X~ (R,O ,t) P~ (cose) sinO de ,

p (2. = 1,2,3,...) (C.20)

(R,t) 0 (C.2l)

~~~ (R,t) = 0 (C.22)

~~~~ (R,t) 0 (C.23)

This completes the derivation of the nonvanishing multipole
coefficients for an axially symmetric source that does not

exhibit any other special symmetry. One result of this re-

duction is that only a single S wave rotational potential

needs to be calculated , since

(R,t) = - 

~~~ (R,t). (C.24)
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The divergence and curl of the displacement field are
monitored in the 2D finite difference source calculation
at stations on the circular arc of radius R in the elastic
region. If the coordinates used in the 2D source calcula-
tion are (Y,Z) for a rectangular grid or (R,e) for a polar
grid (see Figure C.1), one can make the following identif i-
cation,

= - ~~CURL D (R ,O ,t) = - 
~~CURLD (Y ,Z , t ) ,

(R ,8,t) = DIVD (R ,O ,t) = DIVD (Y,Z,t) (C.25)

where

R = (Z 2 
+

0 = tan 1 (Y/Z),

and DIVD and CURLD are the divergence and curl of the dis-
placement field, respectively , as generated by the source
calculation. By applying these relations for x~

4
~ in Eq.

(C.14) and for x~ 
in Eq. (C.19), the numerical integration

in e is carried out in a straightforward fashion.

C.2.2 Axial and Vertical Symmetry

Whenever the seismic source exhibits symmetry or anti—
symmetry with respect to reflections in the XY plane, the

integration in 0 can be reduced to

1T/2f  [1 + (_ ) ~~inJ x~~ 
(R,8,$,t) P~ (cos8) sinO do ,

0 (C.26)

Since P~ (cos(ir-0)) = .(_).2.+m 
~~ (cosO); the positive (nega-

tive) sign in the bracket corresponds to the case where
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x ’
~~ is Symmetric (antisyinmetric ) with respect to reflection

in the XY plane . For the case of axial and vertical sym-
metry ,

(ir -e) = + ~~~ 
(0 ) ,

(ir-8) = - ( 8 ) ,  (C.27)

X ’
~
2
~~( iT— e ) = —

Consequently, the nonvanishing P wave multipole coefficients
are reduced to

ir/2

P ~~~ (R,t) = 4ur C2.0 f  x~
’
~ 

(R ,8,t) P 2. (cose) sine dO ,

(2. = 0,2,4...) (C.28)

Note that the integration in ~ first eliminates all terms
except those with in = 0; the 8 integration eliminates all

• odd—order terms. The nonvanishing S wave multipole coef-
ficients are reduced top

¶T/2

~~~~ (R,t) = — 27r C2.1 f  X~~(R , O ,t) P~ (cose) sinO do ,

(.2. = 2,4,6,...) (C.29)

ir/2

~~~ (R,t) — 2t1 C2.1 f  x~~(R~81 t) P~ (cose) ginO do ,

(2. 2,4,6,...) (C.30)

95

.—..—-~~--- - . -  .- •-u.-----— — - - ~~~~~~~ -—



R— 3119

In summary, the calculation of the multipole coeffi-
cients for a source having axial as well as vertical symmetry

is greatly simplified to a set of integrals along an arc
(00 < 0 < 90°) at a radius R in the elastic region. Only a
single term is found to be nonzero for each even order
multipole , namely that corresponding to in = 0 for P wave
terms and in = 1 for S wave terms. The leading term in the

equivalent elastic source representation corresponds to a
P wave monopole (2.=0) ~~~~ followed by both P wave and S
wave quadrupole terms ($L=2) , ~~~~ ~~~~ ~~~~ Vertical
symmetry is often referred to as “quadrupole” symmetry.
Multipole coefficients for complex axially symmetric sources
were first calculated and applied in teleseismic studies by
Cherry, et al. (May, 1975).

C.2.3 Axial and Vertical Antisyimnetry

For an axially symmetric source, which also exhibits
vertical antisymmetry with respect to reflections in the XY
plane, the relations

= —

(rr—8) + X
(U (8), (C.31)

( ur — 8)  + X~
2
~ 

(8) ,

Can be employed in Eq. (C.25 )  to derive the following non-
vanishing mullipole coefficients,

1T/ 2

(R,t) — 411 C2.0 f  x~~ 
(R ,8,t) P2. (cos8) sinO dO ,

( L a  1,3 , 5 , . . . )  (C .32 )
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ii/2

~~~ (R ,t) = — 2r r C 2.1 f  x~, (R,8,t) P~ (cos8) sinG dO ,

(2.  = 1,3,5,...) (C.33)

(R,t) = — ~~~~ (R ,t ) .

(2. = 1,3,5,...) (C.34)

The leading terms in the equivalent elastic source representa-
tion corresponds to a P wave dipole (2.=l) A~

4
~ and an S wave

dipole (2.=l) B11 and A11 . Vertical antisymmetry is often
referred to as “dipole” symmetry. There is no monopole or
quadrupole terms in such a case. The nonzero multipo].e
coefficients are suzrunarized in Table C.3.

C.3 FAR-FIELD DISPLACEMENT SPECTRA FOR AN AXIALLY SYMMETRIC
SOURCE

For the determination of the teleseismic signature for
an axially symmetric source, only the far-field portion of
the displacement field, which includes only those terms de-

• caying with R 1 in the multipole expansion, is required.
The displacement spectrum can be expressed in terms of the
potential spectrum by

~ (R,w) ~ V ~ (R,w) + V x 
~ (R,u), (C.35)

- k~

where

~~(4 )  (R,w) ~~ ~~~ (w) P2. (cosO) h~
2
~ (k R),

L—0

p
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• ~~(2) (R,w) = (w) P~ (cosO) sin~ h~
2
~ (k R ) ,

(C.37)

~ (2) (R,w) = A~~ (w) P~ (cosO) cos~ h~~~ (k5R),

(C..38)

P x —

with

—

2.1 
— 

2.1

= — ~~~ 
— (1)

k = w/ct , k = w/8, where a and B are the P wave and S wave

body wave velocities, respectively; h2. are spherical Hankel

functions of the second kind ; and the vector R has as
spherical components R,8,~~. The multipole coefficients are
calculated by taking the Fourier transform as defined by

(w) 
h~~~~(k R) ~~ 

~~~~ (R ,t )e~~~ t dt. (C. 39)

The far-field spherical components of the displacement spec—
trum are

[U R (R ,W ) j  FF 
— ~~ .~.( 4 )  (R ,w) , (C.40)

2 
______ 

~ (2)

~~ 
sin~ ~r 

- cosb 
~r 

(C.4l)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  — -  — —  
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= 0, (C.42)

where in the far-field and radial displacement results only

from p wave terms involving and the transverse displace-
ment is only excited by S wave terms involving x.

In general, for an axially symmetric source the far-
field displacement spectrum reduces to

-ik R

FF = — 

~
5_ p 

~~ ,
) 
(w) P2. (cosO)

(C.43)

-ik R

Iu e (R , u ) ) ] FF = l B fl ( w)  P~ (cos8) ,  ( C . 4 4 )

f the source exhibits axial plus vertical symmetry , the lead-
ing terms for the displacement spectrum are

-ik R

[U R (R ,W ) I FF = - 

kOO ~~ 
— A20 ~~ P2 (cosO)

+ ~~~ (~ ) P4 (cose)

+ . •. ‘~ (C.45)

-ik R
[u 8(R ,w)J FF = -4— e S 

~—B~~~ ( w ) P~ (cosO)

+ ( w )  P~ (cos8)

+ •..~~ . (C.46)
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For the case of axial symmetry plus vertical antisymme try,
the leading terms for the displacement spectrum are

-ik R

FF = + (w ~ cosO — (w) P
3 (cosO)

+ ...l (C.47)

-ik R

[u(~~,w~] FF 
= 
2ie (w) P~ (cosO) — 

~~ 
p~ (cosO)

+ . . .L C. 48 )

(I

P

I

p
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APPENDIX D

DESCRIPTION OF A TYPICAL CALCULATION

Teleseismic ground motion is determined by linking the
source calculations performed by Applied Theory , Inc. (ATI)
with elastic wave propagation methods. This has been ac-
complished numerically by mean s of the MULTEES series of
general purpose computer routines developed at S3. MULTEES

calculates the MtJLTipole coefficients for the Equivalent

Elastic Source representation for any arbitrary numerical
source , which has been carried into the small displacement
elastic region. MULTEES accepts the output generated in

either a rectangular or spherical (polar ) coordinate grid
system by any two or three dimensional f inite di f ference
source code .

A brief outline of the key steps in the computational
procedure will be presented in order to i l lustrate selected
f eatures of a typical calcula tion . Three numerical proce-
dures will be described , namely:

1. Preprocessing of the ground motion fields and
generation of the displacement potential fields
(MULTEES.M2);

2. Calculation of the multipole coefficients in t~~
time domain for the equivalent elastic source
(MtJLTEES .M4);

3. Calculation of the Fourier transform of the
multipole coefficients (MULTEES.M5 )

The corresponding computer program applied in each step is
indicated in parenthesis. Once the set of multipole coef-
ficients has been generated at selected frequencies, far-
field displacement spectra and ground motion can be cal-
culated.
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D.l PREPROCESSING OF THE 2D SOURCE OUTPUT

D.l.l Raw 2D Source Calculation Output

The configuration for a near surface explosion source
with a depth of burial given by DOB is illustrated ii~ Figure
D.l. For each of the sources calculated by ATI, the 2D out-

put data for the ground motion fields consist of the follow-
ing quantities at 190 stations for each time cycle:

T Time (sec)
UH Horizontal component of velocity (czn/sec )
UV Vertical component of velocity (cm/sec)
SIGH Horizontal component of stress (dynes/cm 2 )
SIGV Vertical component of stress (dynes/cm 2)

SIGPHI Azimuthal component of stress (dynes/cxn 2)

SIGHV In—plane component of shear stress (dynes/cm 2)

DIVD Divergence of the displacement field
CU RLD Curl of the displacement field .

The direction of the curl is that of the cross product
x where 

~h 
and define , respectively, a posi tive

horizontal direction and the upward vertical direction . The

first 91 monitoring stations were located at 1—degree inter-

vals , starting at the horizontal axis , on a circle of radius
R1, whose center lies at the ground surface on the axis of
symmetry . The second group of 91 stations were also at 1-
degree inte- vals but at a radius R2. There are also 8 sta-

tions at intervals of 2.5 degrees at a radius of R3, start-
ing at the axis of symmetry , where R3 > R2 > R1. The relation-
ship between the spherical coordinates (R ,0) and the rectangu-
lar coordinates (Z,Y) used in the 2D finite difference cal-
culation is also illustrated in Figure D•1. The Z and Y axes

represent the vertical and horizontal directions , respec-
t ivel y.
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z

0
Ground surface

I

DOB
R

I U

I v
•Source

U
h

Figure D.l. Configuration and coordinate system for a near
surface explosion source with a depth of burial DOS. The
relation between the spherical coordinates (R,0) and the
rectangular coordinate system (Z,Y) used in the 2D finite
difference calculation is illustrated.
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The symmetry properties of the displacement and po-
tential fields of an axially symmetric source are discussed

in Appendix C. The derivation of the non—zero multipole
coefficients for an axially symmetric source, which is
also assumed to have vertical (reflection) symmetry or
antisyminetry, is given in Appendix C.2. There it is shown
that the calculation of the multipole coefficients in the
time domain can be reduced to a numerical integration of
these potentials over a single quadrant of the circle of
rad ius R, namely from 0 = 900 to 9 = 180°. The required
Cartesian displacement potentials are defined in terms of
the 2D source output variables (Y,Z) as follows:

(R,O ,4~ iT/2,t) = ~~
. CURLD (Y ,Z,t)

(R,e,t) = DIVD (Y,Z,t) (D.1)

where

2 2 1/2
R = ( Y  + Z )

8 = tan~~ (Y/Z),

and DIV D and CU RLD are the divergence and curl output source
variables from the 2D finite difference calculation.

The first computational step i:-L a typical calcula—

• tion consists of a detailed examination of the raw 2D source
output data. This is accomplished by a series of computer
runs applying various facilities of the MULTEES program M2,
including such operations as

1. Plotting versus time all raw output variables

at selected stations;

2. Plotting versus angle all raw output variables
at selected times;
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3. Listing the complete set of raw output data at
selected times.

For monitoring purposes , simple “printer plots” , which are
generated routinely by the MULTEES programs, are most con-
venient and appropriate. In addition to the eight raw out-
put variables defined above, radial (R) and colatitude (8)
components of particle velocity and acceleration are also
computed and plotted versus both angle and time. The ob-

jective of all of this preprocessing is

1. To identify the general characteristics of the

raw source calcula tion .

2. To c~~ck if the numerical solution has reached
or ~~~~~

— approaching a steady-state condition

a’.. t~he last time cycles.

3. To identify any special features or peculiari-

ties of the numerical data.

The magnitude as well as the general shape of the ground
motion fields were compared with other 2D axisymmetric cal-
culations for complex explosion sources. As a result of
such comparisons, the features which are unique to cratering
calculations were further highlighted .

The angular variation of the displacement potentials
and on the elastic radius at a few selected times

is illustrated in Figures D.2—D.4 for two typical cases.
The calculations are identified by number in Section III of

this report. In these graphs the horizontal axis gives the
colatitude angle 0 in degrees, which measures the position
of each of the 91 monitoring stations on the elastic radius
with respect to the upward vertical position; the left and

right boundaries correspond to the free surface (8 = 90°)
and the downward vertical direction (0 = 180°), respectively.

Figures D.2(a), (b) and (c) display the divergence (with
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overburden removed) for Case 1 at times of 0.442, 0.471
and 0.506 sec. These times correspond to the arrival times
of the primary P wave signal at this radius (R1 = 2100 M)

for stations located at approximately 0 = 1610 , 1180 and
9 80 , respectively. Figure D.3 displays the dilatational

potential (divergence with overburden removed) and
Figure D.4 displays the rotational potential (1/2 curl)
for Case 2 at times of 0.508, 1.005 and 1.998 sec. In
general, the angular variation of the divergence was ob-
served to be relatively smooth only for f i rst motions , i.e.,
near the primary P wave arrival. At such times the displace-
ment and velocity patterns are also quite regular. However,
at most other times the patterns for the particle velocity ,
divergence and curl are noisy to a greater or lesser degree.
The more irregular the velocity pattern, the noisier the
divergence and curl patterns. In previous calculations per-

formed at ~3 for contained sources , regular patterns are
observed throughout the time history ; in particular , the last
time cycle in such cases exhibits a divergence and curl that
is smooth and slowly varying with angle .

D.l.2 S~pecia1 Numerical Features of the Raw Data

A detailed examination of the raw source output data
identified two types of special numerical features. The
first is due to the fact that the source output variable DIVD
included a contribution from the overburden pressure. To
extract the divergence of the displacement field from the
given data, a correction given by pgh/K must be applied ,
where p is the material density , g the gravitational accelera-
tion, h the vertical distance of each station below the sur-
face, and K the bulk modulus. Figure D.5 illustrates time
records for Case 12 both for the raw source variable DIVD

and the divergence after removing the contribution from the
overburden. About 25 percent of the total time history is
shown.
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The second class of discontinuities , which were ob-
served in both the raw divergence (DIVD) and cur l (CURLD)
output data , occur at times during the source calculation
when rezoning took place. Figures D.5 and D.6 illustrate

this characteristic numerical feature in both the divergence
and curl t ime records for Case 12 at 0.351 and 0 .562  sec .
Cases 1, 4 , 5 , 6 , 7 , 9 , 10 , 11 and 12 had discontinuities
at two different  times , since rezoning generally occurred
twice in the course of each source calculation; Cases 2, 3

and 8 , however , had discontinuities at only a single time.
At each discontinuity there were two divergence and curl
values given for the same time point. Moreover , Cases 9 and

12 were further complicated by there being three raw values
at the second discontinuity with one record containing all
null values. This latter record was simply skipped. Ap-
propriate displacement potentials were extracted from the
raw data without making any numerical adjustment for these

discontinuities

D. 2 CALCULATION OF THE MULTIPOLE COEFFICIENT

Once the detailed examination of the raw source data
and the other required preliminary computational procedures
described above are completed , the MULTEES.M2 program
generates the displacement potentials at 91 evenly spaced
points on the elastic radius from 8 = 900 to 9 = 180°.
Complete time records of the displacement potentials at a

single station are illustrated for Cases 2 and 12 in Figures
D.7 and D.8 .  Two features can be noticed in such time
histories. First, the potentials fail to reach static values

at the time the source calculation was terminated . Secondly ,

there appears to be a negative bias in the divergence for the

sandstone case (12). The final time value was 2.5 sec for

all cases except for Case 2 where the source time histories

were terminated at 2.0 sec.
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The MULTEES program M4 uses the displacement poten-

tials generated by M2 to calculate the multipole coeffi-
cients in the time domain according to the symmetry options

specified . The leading P wave and S wave terms, ~~~ (R,t)

and ~~~~ (R,t), respectively , for axial plus vertical antisym—
metry (i.e., “dipole ” symmetry) are displayed in Figure D.7

and Figure D.8. The angular integrations (see Equations

C.32 and C.33 in Appendix C) are carried out numerically on

the elastic radius , which is 210 0 M in Case 2 and 1200 M in
Case 12. A general feature observed for these cratering

calculations is the fa i lure of the multipole coef f ic ients to
reach a steady—state value. Well—behaved dipole coefficients

should approach zero at late times. ~‘.l1 of the dipole coef-

ficients , however , in the next processing step will be set
equal to zero for all times beyond the last time point pre-
sent in each record. For higher-order terms, the amplitudes

are assumed to remain static at the value reached at the
last time point. The length of the time record affects the

f requency content that can be derived from the record .

The next computational step uses the MULTEE S program
M5 to calculate the mul tipole coefficients at a selected
array of frequencies. One of the f i rst steps in this cal-
culation is to linearly interpolate the input time domain
multipole coefficients to evenly spaced time points. This

process is necessary to prepare the coeff icients for the ap-
plication of a standard fast Fourier transform routine.

Moreoever, this removes a possible discrepancy due to the
existence of duplicated records. For example , in the raw
source output data for Case 2 , a total of nine pairs of time
cycles were identified containing duplicate values for the
variables DIVD and CURLD .

The fast  Fourier t ransform of the multipole coeffi-
cient is taken for the dipole terms and the transform of the
derivative of the coeff icient  is taken for terms higher than
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dipole for a total of 1024 f requencies. The frequency inter-
val used in each calculation is given as

1
~~~~2O48~~t ’

where

= (T - T
1
)/(n - 1),

T
1
,T = First and last time record

n = Number of time cycles processed.

As an i l lustrat ion, for Case 2

= 0 .076521 Hz , T = 2 .0015 secn

n = 400 , T1 = 0.15517 sec .

The complex multipole coeff ic ien ts are transformed to ampli-
tude and phase. The next step is a logarithmic interpreta-
tion of the amplitudes and a linear interpolation of the
phases to extract values of the multipole coefficients for
a set of requested output frequencies. Since some of the

output frequencies requested may be below the minimum ~f
defined above , the M5 program extrapolates the amplitudes
for the dipole ~ erms proportional to The output from
this series of calculations performed by MULTEES.M5 is a

set of multipole coefficients for a specified array of fre-

quencies. Multipole coefficients were computed for the
twelve different cratering sources up to order L = 5.

Figures D .7  and D.8(c) and(f) display the leading P wave
and S wave terms ~~~ (~ ) and ~~~ (u), respectively, for
Cases 2 and 12. The amplitudes are plotted versus frequency
on a log-log scale (logarithms are in base 10). Higher

order terms (& = 3 and 2. = 5) are illustrated in Figures
D . 9  and D .10 for Cases 2 and 12. It should be pointed out
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that no damping or other numerical smoothing was applied
to the potential field s themselves nor to the rnulti pole
coefficients.

In summary , the final product of the series of compu-
tational procedures outlined above is the set of multipole
coefficients at selected frequencies. These define the
equ ivalent elastic source for each of the cratering calcula-
tions. Teleseismic displacement spectra can then be derived
from these coefficients.
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APPEN DIX E

THE SEISMIC WAVES DUE TO A STRESS DISTRIBUTION APPLIED
AT THE SURFACE OF A MULTILAYERED HALFSPACE

E.1 INTRODUCTION

We consider the elastic waves generated by the appli-

cation of an axisynunetric stress distribution at the surface

of a medium consisting of plane elastic layers. We are

interested in both the body and surface waves propagating
in the medium. Karkrider (1964 , 1970] has derived the ap-
propriate expressions for the Rayleigh waves generated by

simple sources at depth in a multilayered half space.

Harkrider, et al. [1974] extended this theory to the case

of an overpressure applied at the free surface. The surface

waves generated by the free surface boundary condition of

interest here can be obtained from appropriate modification
of these results.

For far—field body waves we could follow the procedure

used by Fuchs ( 1966] , Hudson (1969 ] and Bache and Harkrider
( 1976] for multilayered media , modifying the boundary condi-
tions appropriately. However, it will be sufficient for our

purposes to compute the far—field body waves in a homogeneous

half space. Treatment of this elementary problem is as in

Ewing , Jardetsky and Press (1957 , Chapter 2].

Let us assume that the surface loading consists of
an axisymmetric distribution of normal and shear stress
components. The geometry is shown in Figure 1. If we
Fourier transform all transient quantities, the free sur-
face boundary conditions are:

— P(r ,c~) ,
(1)

Pzr (r,O ,Ol 4IA)) — Q(r ,w)
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~~~ (r ,t)-

~~~~~~~~~~~~ -~~~~~~~--~~~
--

~~~~

ii ‘

~ 

czr (r,t)

_ _ _  

-

zs+l

z
n-2z _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _

n—~ n—i

n

z

Figure 1. The geometry and coordinate system for an axisym-
metric distribution of normal, and shear stress
applied at the surface of a multilayered half space.
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where P and P are the Fourier transformed normal andzz zr
shear stresses and P~~ Q represent applied stress distri—

butions.

To solve the problem we f irst compute the seismic
waves for impulse loading. The result is the Green ’s

function solution and the total response may then be ob-
tained by area integration.

E.2 GREEN’S FUNCTION FORMULATION

For polar coordinates the Green ’s function for inhomo—

geneous boundary conditions is the response to boundary

loading of the form 45 (r—r )/r (Morse and Feshbach (1953) ,

Chapter 7]. A convenient representation for our purpose is

(e.g., Watson (1966] , Section 14.3),

ä (r;r) 
= f J (kr) J

~~
(kr ) k dk • (2)

For the normal traction boundary condition the appropriate

form of (2) has ~ = 0. For the shear traction the ‘~‘ = 1
case is appropriate. Therefore, the Green ’s function bound-
ary conditions are:

P (r,w) =- I j (kr) J (kr ) k dk
0 J 0 0

0

(3 )

Q (r,w) = I j (kr) J (kr’) k dk .
0 J0
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The solution is obta ined by solving for the seismic
waves due to the normal and shear traction boundary condi-

tions (3) applied separatei4- . The result is the Green ’s

functions , GN (r/r ’) and GT(r/r), for the normal and shear
tractions. The total solution , UT(w) , is then given by the
spatial integration :

UT(
(I)) P(r ,w)GN (r/r )r

~
dr
~ 

Q(r ,w)GT(r/r )r
~
dr .

E.3 SURFACE WAVES — THE GREEN’S FUNCTION

The formalism of Harkrider ( 1964] is used to compute
the surface waves. Since the problem is axisymmetric , the

6 dependent quantities vanish. The important steps in the

analysis are summarized below. The notations used are

essentially the same of those of Harkrider (1964].

Assume a cylindrical coordinate system with origin
at the free surface. The geometry is shown in Figure 1.
The nonvanishing displacements and stresses in the layers
are related to potentials by

q1(r ,z) = ~~
-
~~~--- + ,

w1(r,z) = + k~ p~ ,

(5)

p2. (r,z) = 2u - + + k2 b— — X.k 2 P’ZZ ~ - L 3 z 2 3z i c*.

P
~~

(r,z) = ~~ {
~~ zq~i + _____ + k~
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Define

q’(r,z) f  q~~(r~ z;k) dk

w1(r,z) =f w~
(r,z;k) dk

~~ (r,z) =f ~ .(r,z;k) dk

(6)

~~(r,z) =f ~~
(r,z;k) dk

• P
~~

(r,z) =f P ( r ,z;k) dk

• 
P
~~

(r,z) =f Prz (r,z;k) dk

Since the location of material boundaries depends only
on r, the r and z dependence of the potentials can be sep-
arated:

~~* . (r,z;k) = ~ (z) J (kr) ,
1 1. 0

(7)

~i .(r ,z;k) = 4~.(z) J (kr)1 1. a

P
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If (5) and (6) are substituted into (4) we obtain :

1 ~
‘R.

q~~(r,z;k) -

w~ (r,z;k) — 
~~~- —~~~

-
~~~ J (kr)

( 8 )
P (r,z;k) c (z) J (kr)zz~ R~ 0

P ( r ,z;k )  E —i T
R (z) J (kr)

where the newly introduced normalized velocities and stresses
are defined in terms of the potentials in Eq. (7) of Harkrider
[1964]

The potentials sat~ sfy the wave equations and there-
fore may be written -

- 
—ikr~~ z ikr z

q- . (z) = L~’ e 1 + ~~~~ e 
1

1 1 1

( 9)
—ikr~ z ikr8 z

= e 1 ÷ w~~ e

Define
• -ikr z.

1

ikr~~z. 1
= —k2 e 1

1
(10)

k2 —ikr z.B. B .  i—i
~j~~~ ik— ~-~~e 3.

k2 ikr z.8 8.  :2.—].
•• i 1.Wi = lic —r-- e
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Then continuity of stresses and displacements at layer inter-
fa ces may be expressed by

UR U
R

—
~~~~~ (z~) ~~~~ (z~~1

)

WR
1 1—s-— (z j) —s— (z~_1)

= aR 
, (11)

~~

TR (Zi) 

— 

tR (zi l )

with aR a matrix wit1~ e1ement~ given by Eq. (16) of
Harkride~ (1964].

The relationship between the coefficients in (8) and

the velocity—stress vector can be written as

i~~~ + ~~~~~~ (z.
1 1 c

A A 

WR
— —s-— (z~~~1

)

= ER
1 , (12)

p 
wj  —

+ W~ TR (z1_1)

— — _ 1 
—
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Apply ing the boundary conditions at the free surface,

_ a (z  )
C n—i c

_ a  (z  ) —_t
C n—i C

(13)
R

aR (Z
n 1~n a

TR (z 1)
n 0

where AR = aR ‘ aR ... a~
n-l n—2 1

From (11) and (9) together with the condition that there

be no radiation from infinite depth,

~1
U
R

~~~ 
(z~~~ 1

)

A — (z )n C n—i

ER
1 . (14)
n aR (Z

n 1~

TR (z~_1)
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Therefore , we get Harkrider ’s [1964) equation (62):

Wn

X
(15)

with 3 = ER
1 AR and W, X, Y, Z the elements of the vector on

the right side of (12); i.e., the free surface velocities and
stresses.

The system of equations (14) can be solved for W and
X. The result is

w

= - (GN—LH)Y + ( RN—SL)Z
c FR

p 
(16)

U

= - ( RN—SL)Y + (RN- SK)Z
c FR

where FR, G, N, etc. are combinations of elements of the J

matrix given by Harkrider. Rewrite these as

~
‘1R
_~~~~~~~~~~~ R
c FR ’

(17)

U
R

P 

~R
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By (5) and (7)

w

w (A)~~(r,O) = _ f  ~~~~-2.J (kr) dk

(18)

~ U

q E q ( r ,0) = ~f i~~- -1- J (kr) dk

Then , using (16),

w = if 

N W 

J (kr) dk

0 
kFR 0

- (19)

~ (3)

q
0 

= kF~ 
J (kr) dk

For the surface waves we evaluate the residue contribution
to these integrals. For U~ fixed we find for the ~th mode
that the displacements are:

• {w } = 
~~~ R~ 

H~
2
~ (k r) ,

a R~ kR . / aF R\ 0

A (20)

N~
3
~

{~~0
}
R~ = 

~ ~~F14~ 
H~

2
~ (kR r) ,

1

where (3F /3k) ., ~~~~~ N~
3
~ are evaluated at (w,k ) suchR j  R~ R3that F (W ,kR ) = 0. These can be combined to give

R
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-

~ 
H~

2
~ (kR r)

I .= — i. I— I ~w 
} . (21)

[w o R~ ~~~ (kR r)
° H~ 

0

S S

where [u /w ]H = —K/L, the ellipticity.

It remains to cast (19) in a form suitable for com-

putation. We have

N~
1
~ =-(GN — LN)(Y +~~~ Z)

U
-~~~~ 

z ( (22)= _i(G*N - L*N) ~Y - (
W /

0 Nj
I

where G = iG*, etc. Also,

p N~
3
~ = _ (~ ..) N~ U

w H j

(G*N — L*N) 
(
_-i~ — Z (23)

O H )

u \ ( /u ’

• 1w H ~ w I

j

Then the vertical and radial components of the Rayleigh wave

displacement are

J u
7T 2. ~ 

— S

{ w }  y — I _ L  Z H~
2
~ (k R r)I .a R k

~~~
_R
j~~ 1w

L -  01  H~ (2 4 )

j

S S

~ I 
~~ AR 

)~ - I ~~~ ff
(2

~ (kR r)
{q } _ ..._. I . . 1  i

1u I~ R .  R .  ~w ( I w  I ) 1 j
~ ~ H~ 

L 0 J

p
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where -

— 
(G*N - L*H)

j  i R
‘w- .

3

To complete the Green ’s function formulation it is neces-
sary to interpret Y and Z in terms of the boundary con-
ditions given by (3). From (5) and (7)

~~zz~~~.0 
= CR J (kr) dk

(25)

rz
~~ .0 

= _ if  TR J (kr) dk

where CR 
‘~ and TR - Z.

0 0

Comparing (24) with (1) and (3), we see that

C
R 

= k J (k r )  ,
(26)

T =ik J (kr’),R
0

give the desired Green ’s functions. For the two cases of

normal and shear traction they are:

Case 1. Applied normal traction: The Green ’s function is

(r r~) = —i rr  A J (k r ”) II(2) (k r) (27)
N _R~ a R~ 0 Rj
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and the surface wave displacements are given by

N
fw } = G (rIr )

0 R . N
3

(28)

(2)
N 1 R .

r 
~ ______ Stq ~ = ~ ‘2’ G~~(r r )
~ R. ~ H ’ ‘(k r)

3 R~

where c = -i(~i /w 1 has been introduced.p 3 0 o H ~

Case 2 Applied shear traction : The Green ’s function is

• G~,(rJr
I ) = —i-ir AR E~~ J (kR r ) II (2) (kR r) , (29)

and the displacements are given by (27) with G~~(rIr
”) re—

placing G~~(r~r).

E.4 SURFACE WAVES - SOLUTION FOR A DISTRIBUTED SURFACE
LOAD

Equations (26) and (28) give the Green ’s functions for
• normal and shear traction loading applied at the point r = r .

From these Green ’s functions we can derive the solutions for
loads distributed over the free surface. The basic equation

relating the Green ’s function to the total solution is (4).
p

Case 1: Applied Normal Traction

We consider the boundary conditions (1) and assume
initially that Q (r ,w) vanishes. Let us also assume that
the loading is restricted in spatial extent; that is,

P
~~~

(r ,J ,0,w) = P (r,w), a < r < b ,
(30)

= 0 , elswhere .
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Then

{ w } ~ = f  P ( r ,w)  G
N ( r I r

~~
) r~~dr ,

(31)

= — i~~~ H
~
2
~~
(kR

r) f  P (r ,W)J (kR r’)rdr ,

and

H~
2
~ (kR r)

= 

~ H~
2
~ (kR r)

Case 2: Applied Shear Traction

In this case we compute the displacements for boundary
conditions (1) with P (r ,W) vanishing. Again , let us assume

0
that the loading is applied for a < r < b. Then

{ w } ~ f  Q(r ,w) GT(rIr ) rdr

(32)

= _ i
~

AR c .  H
~
2
~~
(kR r) f  Q ( r , w)  J (kR r

~
) r d r ,

~
(2) (kR r)

~ H~
2
~ (k

R r) S

From (31) and (32) we see that the boundary stress—time his-
tories appear only in the spatial integrals
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~ (w) = f  P(r~ ,w) J (k~~r )  rdr ,

(33)

0(w) = J Q(r ,w) 3 (kR r ) r d r~ ,

It is necessary to evaluate these integrals for each fre-
quency , w , of interest for the surface wave calculations.
In general , this is done numerically.

Since the problem is linear , we can superimpose the
solutions (31) and (32) to obtain the solution when both
normal and shear tractions are applied . The total Rayleigh

wave displacement is

fw }  ={w }N + ( w } 5
0 R~ 0 R~ 0 R~

(34)
p

{q
0
}~ = + { q } ~

J 3 3

Substituting from (31) and (32) ,  this may be written

{ w }
R = i

~ AR H
~
2
~~
(kR r) [P + c .  Q ] ,

(35)
R

= 

~ H~
2
~ (k r) 

Cw } R
0

• where P and Q are given by the integrals (33). Finally, note
that in the far—field (k

R
r >> 1) we can use the asymptotic

approximation for the Han~e1 functions which is

H~
2
~ (Z) i%,1~~. e 

— 2 
— 

‘~ (36)
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Then the expression for fq } reduces toR
3

{q} = i c . (w } . ( 3 7 )o R .  3 o R ~

For the fundamental mode ( j  = 0) Rayleigh wave < 0 and

(37) prescribes retrograde elliptic par ticle motion .

E.5 BODY WAVES -- THE GREEN’S FUNCTION

As we pointed out in the introduction , we could derive
the expressions for the body waves due to distributed surface

loading using procedures analogous to those followed for sur-
face waves. However , it will be suf f ic ient to consider only
the homogeneous half space case which is quite easy since the
solution follows directly from results given by Ewing ,

Jardetsky and Press (1957 ], subsequently referred to as EJP.

Case 1: Applied Normal Traction

Consider the Green ’s function boundary conditions (3)

and set Q (r,ui ) = 0. Then from EJP, equations (2-59) to

(2-68), it is quite easy to show that the diltational poten-
tial , ~~, may be written as

= 
1 J (2k 2 - k~ ) 

e~~~ (kr)J (kr ) kdk , (38)

where F(k), the Rayleigh function, and the other notations

are as in EJP. -

The k-integral (38) represents the total solution.
The far-field body wave portion of the solution can be

shown to result from evaluating (38) in the complex plane
and approximating the branch line contribution to the integral

by using the method of steepest descent. A number of authors
have dealt with integrals of this form including EJP, Chapter
2,and Fuchs [1966]. Bacite and Harkrider (1976, Eq. 30] write
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the solution for far-field body waves in compact form. Ob-

serving this formula , the solution is

b k ( 2 k 2 - k2) ikR

= F ( k )  
B r J (kr ) , (39 )

I
r 2 

= c 2 /a 2 — 1,
a

R 2 
= r 2 + z2 ,

p

sin-O = a/c = r/R ,

where 0 is the takeoff angle measured from the downward verti-
cal and c is horizontal phase velocity . The far-field dis-

placements are then found by differentiating (39) with res-

pect to R and retaining only terms of order R ’. The result

is the Green ’s function

(2k 2 — k2) —ik R

G~ (rIr~ ) = k k  i.~F(k) 
r 3 (kr ) . ( 4 0 )

Case 2: Applied Shear Traction

Now consider (32) and set P (r ,w) = 0. Then following
the same procedure as was used to derive (38), we find that

= f  
~~~ 

e~~~ J (kr) J (kr ) dk. (41)

The Green ’s function for far-field body waves is then

-ik R

G~ (rlr ~) = (k 2 - k~ ) r 
~~1 

(kr )

(42)
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The far-field body wave Green ’s functions (40, 42) are
analogous to (27, 29) for surface waves. The relation be-
tween the Green ’s functions and the total solution for the
distributed loads (1) is given by (4). Assuming the boundary

loading to be applied in the region a < r < b , we have the
total far-field body wave displacement

b k(2k2 - k2) -ik R

U(w) =f P(r ,w) k 
uF(k 

8 r J (kr ) rdr

b k(k2 k2 —ik R

+J Q (r ~’~w) 2k 
i~iF (k) 

r J (kr ) rdr .

( 4 3)

This may be reduced to

-ik R
U ( ~~) = 

~iF (k)  ~( 2 k 2 _k~ ) P ( w ) + ( k 2 -k~ ) Q ( w ) ~ ( 4 4 )

(4 4 )
where P(w), Q(w) are the spatial integrals given by (33).
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